
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING-IOT Including CS&BCT

COURSE NAME : 19CS307- DATA STRUCTURES

II YEAR / III SEMESTER

Unit V- SORTING AND SEARCHING

11/3/2022 1/X
SORTING AND SEARCHING /19CS307- DATA STRUCTURES

/Mr.R.Kamalakkannan/CSE-IOT/SNSCE

Topic :Rehashing

11/3/2022 2/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Rehashing

• Rehashing means hashing again

• The size of the array is increased (doubled) and all the
values are hashed again and stored in the new double sized
array to maintain a low load factor and low complexity.

• Rehashing: Try H1, H2, …, Hm in sequence if collision occurs. Here
Hi is a hash function.

• Double hashing is one of the best methods for dealing with
collisions.

– If the slot is full, then a second hash function is calculated
and combined with the first hash function.

– H(k, i) = (H1(k) + i H2(k)) % m

11/3/2022 3/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Cont..

• The probing sequence will be:

• index = (index + 1 * indexH) % hashTableSize;
index = (index + 2 * indexH) % hashTableSize;

11/3/2022 4/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Implementation of hash table with
double hashing

• initialization

• string hashTable[21];

• int hashTableSize = 21;

• Insert

• void insert(string s)

• {

• //Compute the index using the hash function1

• int index = hashFunc1(s);

• int indexH = hashFunc2(s);

• //Search for an unused slot and if the index exceeds the hashTableSize roll
back

• while(hashTable[index] != "")

• index = (index + indexH) % hashTableSize;

• hashTable[index] = s; }

11/3/2022 5/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Search

• void search(string s)

• {

• //Compute the index using the hash function int index
= hashFunc1(s);

• int indexH = hashFunc2(s);

• //Search for an unused slot and if the index exceeds
the hashTableSize roll back

• while(hashTable[index] != s and hashTable[index] != "")

• index = (index + indexH) % hashTableSize;

11/3/2022 6/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Cont..

• //Is the element present in the hash table
if(hashTable[index] == s)

• cout << s << " is found!" << endl;

• else

• cout << s << " is not found!" << endl; }

11/3/2022 7/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Application

• Associative arrays: Hash tables are commonly used to
implement many types of in-memory tables

• Object representation: Several dynamic languages, such as
Perl, Python, JavaScript, and Ruby use hash tables to
implement objects.

• Hash Functions are used in various algorithms to make their
computing faster

11/3/2022 8/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Thank you

11/3/2022 9/8
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

