
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING-IOT Including CS&BCT

COURSE NAME : 19CS307- DATA STRUCTURES

II YEAR / III SEMESTER

Unit V- SORTING AND SEARCHING

Topic : Linear probing (Open Addressing or

Closed Hashing)

11/3/2022 1/X
SORTING AND SEARCHING /19CS307- DATA STRUCTURES

/Mr.R.Kamalakkannan/CSE-IOT/SNSCE

Linear probing (Open Addressing or Closed
Hashing)

11/3/2022 2/7
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Linear probing (Open Addressing or

Closed Hashing)

• In open addressing, instead of in linked lists, all entry
records are stored in the array itself.

• He hash index of the hashed value is computed and then
the array is examined (starting with the hashed index).

• If the slot at the hashed index is unoccupied, then the entry
record is inserted in slot at the hashed index else it
proceeds in some probe sequence until it finds an
unoccupied slot.

• The name "open addressing" refers to the fact that the
location or address of the item is not determined by its
hash value.

11/3/2022 3/7
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Cont..

• Linear probing is when the interval between successive
probes is fixed (usually to 1). Let’s assume that the hashed
index for a particular entry is index.

• The probing sequence for linear probing will be:

index = index % hashTableSize
index = (index + 1) % hashTableSize
index = (index + 2) % hashTableSize
index = (index + 3) % hashTableSize

11/3/2022 4/7
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Implementation of hash table
with linear probing (Syntax)

• string hashTable[21];
• int hashTableSize = 21;
• Insert
• void insert(string s)
• {
• //Compute the index using the hash function
• int index = hashFunc(s);
• //Search for an unused slot and if the index will exceed the

hashTableSize then roll back
• while(hashTable[index] != "")
• index = (index + 1) % hashTableSize;
• hashTable[index] = s;
• }

11/3/2022 5/7
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Search

• void search(string s)
• {
• //Compute the index using the hash function int index =

hashFunc(s);
• //Search for an unused slot and if the index will exceed the

hashTableSize then roll back
• while(hashTable[index] != s and hashTable[index] != "")
• index = (index + 1) % hashTableSize;
• //Check if the element is present in the hash table
• if(hashTable[index] == s)

• cout << s << " is found!" << endl;
• else
• cout << s << " is not found!" << endl; }

11/3/2022 6/7
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Example

11/3/2022 7/7
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Thank you

11/3/2022 8/7
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

