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Linear probing (Open Addressing or Closed 
Hashing)
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Linear probing (Open Addressing or 

Closed Hashing)

• In open addressing, instead of in linked lists, all entry
records are stored in the array itself.

• He hash index of the hashed value is computed and then
the array is examined (starting with the hashed index).

• If the slot at the hashed index is unoccupied, then the entry
record is inserted in slot at the hashed index else it
proceeds in some probe sequence until it finds an
unoccupied slot.

• The name "open addressing" refers to the fact that the
location or address of the item is not determined by its
hash value.
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Cont..

• Linear probing is when the interval between successive 
probes is fixed (usually to 1). Let’s assume that the hashed 
index for a particular entry is index. 

• The probing sequence for linear probing will be:

index = index % hashTableSize
index = (index + 1) % hashTableSize
index = (index + 2) % hashTableSize
index = (index + 3) % hashTableSize
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Implementation of hash table 
with linear probing  (Syntax )

• string hashTable[21]; 
• int hashTableSize = 21; 
• Insert
• void insert(string s)
• { 
• //Compute the index using the hash function
• int index = hashFunc(s); 
• //Search for an unused slot and if the index will exceed the 

hashTableSize then roll back 
• while(hashTable[index] != "") 
• index = (index + 1) % hashTableSize;
• hashTable[index] = s;
• }
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Search

• void search(string s) 
• { 
• //Compute the index using the hash function int index = 

hashFunc(s);
• //Search for an unused slot and if the index will exceed the 

hashTableSize then roll back 
• while(hashTable[index] != s and hashTable[index] != "") 
• index = (index + 1) % hashTableSize;
• //Check if the element is present in the hash table 
• if(hashTable[index] == s) 

• cout << s << " is found!" << endl; 
• else 
• cout << s << " is not found!" << endl; }
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Example 
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Thank you 
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