
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING-IOT Including CS&BCT

COURSE NAME : 19CS307- DATA STRUCTURES

II YEAR / III SEMESTER

Unit V- SORTING AND SEARCHING

Topic :INSERTION, SHELL AND SELECTION SORT

11/3/2022 1/X
SORTING AND SEARCHING /19CS307- DATA STRUCTURES

/Mr.R.Kamalakkannan/CSE-IOT/SNSCE

Insertion , Shell and Selection
Sort

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
2/24

Insertion Sort

• Insertion sort is based on the idea that one
element from the input elements is consumed
in each iteration to find its correct position

• i.e, the position to which it belongs in a sorted
array.

• It iterates the input elements by growing the
sorted array at each iteration

• It compares the current element with the
largest value in the sorted array.

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
3/24

Cont..

• If the current element is greater, then it leaves
the element in its place and moves on to the
next element else it finds its correct position
in the sorted array and moves it to that
position.

• This is done by shifting all the elements,
which are larger than the current element, in
the sorted array to one position ahead

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
4/24

Syntax

• void insertion_sort (int A[] , int n)

• {

• for(int i = 0 ;i < n ; i++)

• {

• /*storing current element whose left side is
checked for its correct position .*/

• int temp = A[i];

• int j = i;

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
5/24

Cont..

• /* check whether the adjacent element in left
side is greater or less than the current element.
*/

• while(j > 0 && temp < A[j -1])

• {

• // moving the left side element to one position
forward.

• A[j] = A[j-1];

• j= j - 1;

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
6/24

Cont..

• }

• // moving current element to its correct
position.

• A[j] = temp;

• }

• }

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
7/24

Example

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
8/24

Shell Sort

• Shell sort is an algorithm that first sorts the
elements far apart from each other and
successively reduces the interval between the
elements to be sorted.

• It is a generalized version of insertion sort.

• In shell sort, elements at a specific interval are
sorted.

• The interval between the elements is gradually
decreased based on the sequence used

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
9/24

Shell Sort Algorithm

shellSort(array, size)

for interval i <- size/2n down to 1

for each interval "i" in array

sort all the elements at interval "i"

end shellSort

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
10/24

Syntax

 #include <stdio.h>
 void shellSort(int array[], int n){
 for (int gap = n/2; gap > 0; gap /= 2){
 for (int i = gap; i < n; i += 1) {
 int temp = array[i];
 int j;
 for (j = i; j >= gap && array[j - gap] > temp; j -= gap){
 array[j] = array[j - gap];
 }
 array[j] = temp;
 }}}

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
11/24

Cont..
 void printArray(int array[], int size){
 for(int i=0; i<size; ++i){
 printf("%d ", array[i]);
 }
 printf("\n");
 }
 int main(){
 int data[]={9, 8, 3, 7, 5, 6, 4, 1};
 int size=sizeof(data) / sizeof(data[0]);
 shellSort(data, size);
 printf("Sorted array: \n");
 printArray(data, size);
 }

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
12/24

Example

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
13/24

Cont..

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
14/24

Cont..

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
15/24

Cont..

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
16/24

Cont..

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
17/24

Cont..

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
18/24

SELECTION SORT

• This sorting algorithm is an in-place comparison-based algorithm in which

the list is divided into two parts, the sorted part at the left end and the

unsorted part at the right end.

• Initially, the sorted part is empty and the unsorted part is the entire list.

• The smallest element is selected from the unsorted array and swapped

with the leftmost element, and that element becomes a part of the sorted

array.

• This process continues moving unsorted array boundary by one element

to the right.

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
19/24

SELECTION SORT –Cont..

• How Selection Sort Works?

• Consider the following depicted array as an example.

• For the first position in the sorted list, the whole list is scanned
sequentially. The first position where 14 is stored presently, we search
the whole list and find that 10 is the lowest value.

• So we replace 14 with 10. After one iteration 10, which happens to be
the minimum value in the list, appears in the first position of the sorted
list.

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
20/24

SELECTION SORT

• Following is a pictorial depiction of the entire sorting
process

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
21/24

SELECTION SORT -Cont..

• Algorithm
• Step 1 − Set MIN to location 0

• Step 2 − Search the minimum element in the list

• Step 3 − Swap with value at location MIN

• Step 4 − Increment MIN to point to next element

• Step 5 − Repeat until list is sorted

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
22/24

SELECTION SORT -Cont..

• procedure selection sort

• list : array of items

• n : size of list

• for i = 1 to n - 1

• /* set current element as minimum*/

• min = I

• /* check the element to be minimum */

• for j = i+1 to n

• if list[j] < list[min] then

• min = j;

• end if end for

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
23/24

SELECTION SORT -Cont..

• /* swap the minimum element with the current element*/

• if indexMin != i then

• swap list[min] and list[i]

• end if

• end for

• end procedure

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
24/24

Thank you

11/3/2022
SORTING AND SEARCHING /19CS307- DATA
STRUCTURES /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
25/24

