

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING-IOT Including CS&BCT

COURSE NAME : 19CS307- DATA STRUCTURES

II YEAR / III SEMESTER

Unit IV- NON LINEAR DATA STRUCTURES - GRAPH

TOPIC: Graphs

11/3/2022

NON LINEAR DS-GRAPH /19CS307- DATA STRUCTURES /Mr.R.Kamalakkannan/CSE-IOT/SNSCE

What is a graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices

Formal definition of graphs

• A graph G is defined as follows:

V(G): a finite, nonempty set of verticesE(G): a set of edges (pairs of vertices)

- Graph and its representations
- Graph is a data structure that consists of following two components:
 - **1.** A finite set of vertices also called as nodes.
 - **2.** A finite set of ordered pair of the form (u, v) called as edge.
- The pair is ordered because (u, v) is not same as (v, u) in case of a directed graph(di-graph).
- The pair of the form (u, v) indicates that there is an edge from vertex u to vertex v. The edges may contain weight/value/cost.

Cont..

- Graphs are used to represent many real-life applications
- Graphs are used to represent networks.
- The networks may include paths in a city or telephone network or circuit network
- Graphs are also used in social networks like linkedIn, Facebook.
- For example, in Facebook, each person is represented with a vertex(or node).
- Each node is a structure and contains information like person id, name, gender and locale

Directed vs. undirected graphs

• When the edges in a graph have no direction, the graph is called *undirected*

Directed vs. undirected graphs (cont.)

• When the edges in a graph have a direction, the graph is called *directed* (or *digraph*)

E(Graph2) = {(1,3) (3,1) (5,9) (9,11) (5,7)_{NON LINEAR DS-GRAPH /19CS307- DATA 11/3/2022 STRUCTURES /Mr.R.Kamalakkannan/CSE-IOT/SNSCE}

Graph terminology

 <u>Adjacent nodes</u>: two nodes are adjacent if they are connected by an edge

adjacent to 7 7 is adjacent from 5

- <u>Path</u>: a sequence of vertices that connect two nodes in a graph
- <u>Complete graph</u>: a graph in which every vertex is directly connected to every other vertex

Adjacency Matrix

Following two are the most commonly used representations of a graph.

- 1. Adjacency Matrix
- **2.** Adjacency List The adjacency matrix for the above example graph is:

Adjacency List

Graph implementation

- <u>Array-based implementation</u>
 - A 1D array is used to represent the vertices
 - A 2D array (adjacency matrix) is used to represent the edges

graph

.numVertices 7 .vertices

.edges

[2]	0	0	0	0	1000	0	0	•	•	•
[3]	0	200	900	0	780	0	0			•
[4]	1400	0	1000	0	0	0	0	۲	•	٠
[5]	800	0	0	0	0	0	0	٠	٠	٠
[6]	600	0	0	1300	0	0	0	٠	•	٠
[7]	•		٠	•	•	•	•	٠	٠	٠
[8]	•	•	۲	•	•	•	•	٠	•	
[9]	•		•	•	•	•	•		•	
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

IOT/SNSCE

11/3/2022

Graph implementation (cont.)

- Linked-list implementation
 - A 1D array is used to represent the vertices
 - A list is used for each vertex v which contains the vertices which are adjacent from v (adjacency list)

(a)

15

Adjacency matrix vs. adjacency list

Adjacency matrix

- Good for dense graphs
- Memory requirements
- Connectivity between two vertices can be tested quickly
- Adjacency list
 - Good for sparse graphs
 - Memory requirements
 - Vertices adjacent to another vertex can be found quickly

ACTIVITY

MCQ

- 1. Which of the following is true?
 - a) A graph may contain no edges and many vertices
 - b) A graph may contain many edges and no vertices
 - c) A graph may contain no edges and no vertices
 - d) A graph may contain no vertices and many edges
- 2. A graph with all vertices having equal degree is known as a _____a) Multi Graph
 - b) Regular Graph
 - c) Simple Graph
 - d) Complete Graph

Thank you

NON LINEAR DS-GRAPH /19CS307- DATA STRUCTURES /Mr.R.Kamalakkannan/CSE-IOT/SNSCE