
UNIT IV TRANSACTIONS MANAGEMENT

Transaction Concepts – ACID Properties –

Schedules – Serializability – Concurrency Control –

Need for Concurrency – Locking Protocols – Two

Phase Locking – Deadlock – Transaction

Recovery - Save Points – Isolation Levels – SQL

Facilities for Concurrency and Recovery

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

TWO PHASE LOCKING

PROTOCOL

• This protocol requires that each transaction issue lock and unlock request in two phases

• Growing phase

• Shrinking phase

• Growing pha

• During this phase new locks can be occurred but none can be released

• Shrinking phase

• During which existing locks can be released and no new locks can be occurred

• Types

• Strict two phase locking protocol

• Rigorous two phase locking protocol

• Strict two phase locking protocol

• This protocol requires not only that locking be two phase, but also all exclusive locks taken by a transaction be held
until that transaction commits.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn…

• Rigorous two phase locking protocol

• This protocol requires that all locks be held until all transaction commits.

• Consider the two transaction T1 and T2 T1 : read(a1);

• read(a2);

• ……. read(an);

• write(a1); T2: read(a1);

• read(a2); display(a1+a1);

• Lock conversion

• Lock Upgrade

• Lock Downgrade

• Lock upgrade:

• Conversion of existing read lock to write lock

• Take place in only the growing phase

• if Ti has a read-lock (X) and Tj has no read-lock (X) (i j) then convert

read-lock (X) to write-lock (X)

• else

• force Ti to wait until Tj unlocks X

• Lock downgrade:

• conversion of existing write lock to read lock

• Take place in only the shrinking phase

• Ti has a write-lock (X) (*no transaction can have any lock on X*) convert

write-lock (X) to read-lock (X)

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn..

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Transaction State

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn..

• Active – the initial state; the transaction stays in this state while it is executing

• Partially committed – after the final statement has been executed.

• Failed -- after the discovery that normal execution can no longer proceed.

• Aborted – after the transaction has been rolled back and the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:

o restart the transaction

o kill the transaction

• Committed – after successful completion

• Log

• Log is a history of actions executed by a database management system to guarantee ACID properties over crashes

or hardware failures.

• Physically, a log is a file of updates done to the database, stored in stable storage.

• Log rule

– A log records for a given database update must be physically written to the log, before the update physically written to

the database.

– All other log record for a given transaction must be physically written to the log, before the commit log record for the
transaction is physically written to the log.

– Commit processing for a given transaction must not complete until the commit log record for the transaction is
physically written to the log.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn..

• System log

– [Begin transaction ,T]

– [write_item , T, X , oldvalue,newvalue]

– [read_item,T,X]

– [commit,T]

– [abort,T]

• Assumes fail-stop model – failed sites simply stop working, and do not cause any other harm, such as sending incorrect
messages to other sites.

• Execution of the protocol is initiated by the coordinator after the last step of the transaction has been reached.

• The protocol involves all the local sites at which the transaction executed

• Let T be a transaction initiated at site Si, and let the transaction coordinator at Si be Ci

• Phase 1: Obtaining a Decision (prepare)

• Coordinator asks all participants to prepare to commit transaction Ti.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn..

– Ci adds the records <prepare T> to the log and forces log to stable storage

– sends prepare T messages to all sites at which T executed

• Upon receiving message, transaction manager at site determines if it can commit the transaction

– if not, add a record <no T> to the log and send abort T message to Ci

– if the transaction can be committed, then:

– add the record <ready T> to the log

– force all records for T to stable storage

– send ready T message to Ci

• Phase 2: Recording the Decision (commit)

• T can be committed of Ci received a ready T message from all the participating sites: otherwise

• T must be aborted.

• Coordinator adds a decision record, <commit T> or <abort T>, to the log and forces record onto stable storage.
Once the record stable storage it is irrevocable (even if failures occur)

• Coordinator sends a message to each participant informing it of the decision (commit or abort)

• Participants take appropriate action locally.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn..

• Handling of Failures - Site Failure

• When site Si recovers, it examines its log to determine the fate of
transactions active at the time of the failure.

• Log contain <commit T> record: site executes redo (T)

• Log contains <abort T> record: site executes undo (T)

• Log contains <ready T> record: site must consult Ci to determine the fate of T.

– If T committed, redo (T)

– If T aborted, undo (T)
• The log contains no control records concerning T replies that Sk failed before responding to

the prepare T message from Ci

–since the failure of Sk precludes the sending of such a

• response C1 must abort T

– Sk must execute undo (T)

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn..

• Handling of Failures- Coordinator Failure
• If coordinator fails while the commit protocol for T is executing then participating sites must

decide on T‘s fate:
1. If an active site contains a <commit T> record in its log, then T must be committed.
2. If an active site contains an <abort T> record in its log, then T must be aborted.

3. If some active participating site does not contain a <ready T> record in its log, then
• the failed coordinator Ci cannot have decided to commit T. Can therefore abort T.

4. If none of the above cases holds, then all active sites must have a <ready T> record in
their logs, but no additional control records (such as <abort T> of <commit T>). In
this case

• active sites must wait for Ci to recover, to find decision.

• Blocking problem : active sites may have to wait for failed coordinator to recover.

• Handling of Failures - Network Partition
• If the coordinator and all its participants remain in one partition, the failure has no

effect on the commit protocol.
• If the coordinator and its participants belong to several partitions:

• – Sites that are not in the partition containing the coordinator think the coordinator
has failed, and execute the protocol to deal with failure of the coordinator.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn…

• No harm results, but sites may still have to wait for decision from
coordinator.

• The coordinator and the sites are in the same partition as the coordinator think
that the sites in the other partition have failed, and follow the usual commit
protocol.

• Again, no harm results

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

Conn…

Thank You…….

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT

