
UNIT IV TRANSACTIONS MANAGEMENT

Transaction Concepts – ACID Properties –

Schedules – Serializability – Concurrency Control –

Need for Concurrency – Locking Protocols – Two

Phase Locking – Deadlock – Transaction

Recovery - Save Points – Isolation Levels – SQL

Facilities for Concurrency and Recovery

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

• When multiple transactions are being executed by the operating system in a
multiprogramming environment, there are possibilities that instructions of one transactions are
interleaved with some other transaction.

• Serializability is the classical concurrency scheme.

• It ensures that a schedule for executing concurrent transactions is equivalent to one that
executes the transactions serially in some order.

• Serializable schedule

• If a schedule is equivalent to some serial schedule then that schedule is called
Serializable schedule

• Let us consider a schedule S. What the schedule S says ? 

• Read A after updation.

• Read B before updation.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

• Let us consider 3 schedules S1, S2, and S3. We

have to check whether they are serializable

with S or not ?

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

• Types of Serializability

• -Conflict Serializability

• -View Serializability

• Conflict Serializable

• Any given concurrent schedule is said to be Conflict Serializable if and only if it is Conflict equivalent to one of 
the possible serial schedule.

• Two schedules would be conflicting if they have the following properties

– Both belong to separate transactions.

– Both accesses the same data item.

– At least one of them is "write" operation.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

• Conflicting Instructions

• Instructions li and lj of transactions Ti and Tj respectively, conflict if they are operations by different
transaction on the same data item, and at least one of these instruction is write operation.

1.li = read(Q), lj = read(Q). li and lj don‘t conflict.

2.li = read(Q), lj = write(Q). They conflict.

3.li = write(Q), lj = read(Q). They conflict

4.li = write(Q), lj = write(Q). They conflict
• Two schedules having multiple transactions with conflicting operations are said to be conflict equivalent if 
and only if

– Both the schedules contain the same set of Transactions.

– The order of conflicting pairs of operation is maintained in both the schedules.
– If a schedule S can be transformed into a schedule S´ by a series of swaps of non-conflicting 

instructions, we say that S and S´ are conflict equivalent.

–We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule

• Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by series of 
swaps of non-conflicting instructions. Therefore Schedule 3 is conflict serializable.

• Schedule 3

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



SERIALIZABILITY

• View Serializable
Any given concurrent schedule is said to be View Serializable if and only if it is View equivalent to 

one of the possible serial schedule.
Let S and S´ be two schedules with the same set of transactions. S and S´ are view

equivalent if the following three conditions are met, for each data item Q,

1. If in schedule S, transaction Ti reads the initial value of Q, then in schedule S’

also transaction Ti must read the initial value of Q.

2. If in schedule S, transaction Ti executes read(Q), and that value was produced by transaction Tj

(if any), then in schedule S’ also transaction Ti must read the value of Q that was produced by the 

same write(Q) operation of transaction Tj .
3. The transaction (if any) that performs the final write(Q) operation in schedule S must also 

perform the final write(Q) operation in schedule S’.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



CONCURRENCY CONTROL

• Process of managing simultaneous execution of transactions in a shared database, to ensure the serializabilityof transactions, is known as concurrency

control.

• Process of managing simultaneous operations on the database without having them interfere with one another.

• Prevents interference when two or more users are accessing database simultaneously and at least one is updating data.

• Although two transactions may be correct in themselves, interleaving of operations may produce an incorrect result.

• Simultaneous execution of transactions over a shared database can create several data integrity and consistency problems.

• lost updated problem

• Temporary updated problem

• Incorrect summery problem

• Lost updated problem

• This problem occurs when two transactions that access the same database items have their operations interleaved in a way that makes the value of

some database item incorrect.

• Successfully completed update is overridden by another user.

• Example:

• T1 withdraws £10 from an account with balx, initially £100.

• T2 deposits £100 into same account.

• Serially, final balance would be £190.

• Loss of T2's update!!

• This can be avoided by preventing T1 from reading balx until after update.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



CONCURRENCY CONTROL

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



CONCURRENCY CONTROL

• Temporary updated problem
• This problem occurs when one transaction updates a database item and then the transaction fails for some 

reason. The updated item is accessed by another transaction before it is changed back to its original value.
• Occurs when one transaction can see intermediate results of another transaction before it has 

committed.

• Example:

• T1 updates balx to £200 but it aborts, so balx should be back at original value of £100.
• T2 has read new value of balx (£200) and uses value as basis of £10 reduction, giving a new 

balance of £190, instead of £90.

• Problem avoided by preventing T2 from reading balx until after T1 commits or aborts.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



CONCURRENCY CONTROL

• Incorrect summary problem

• If one transaction is calculating an aggregate summary function on a number of records while other 
transactions are updating some of these records, the aggregate function may calculate some values before 
they are updated and others after they are updated.

• Occurs when transaction reads several values but second transaction updates some of them during 
execution of first.

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



CONCURRENCY CONTROL

• Example:

• T6 is totaling balances of account x (£100), account y (£50), and account z (£25).

• Meantime, T5 has transferred £10 from balx to balz, so T6 now has wrong result (£10 too high).

• Problem avoided by preventing T6 from reading balx and balz until after T5 completed updates.

• Concurrency control techniques
Some of the main techniques used to control the concurrent execution of transaction are based on 

the concept of locking the data items

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT



Conn…

Thank You…….

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT


