

- ➤ It requires that the value for a certain set of attributes determines uniquely the value for another set of attributes.
- ➤ In a given relation R, X and Y are attributes. Attributes Y is functionally dependent on attribute X if each value of X determines exactly one value of Y, which is represented as

 $X \rightarrow Y$

 $X \rightarrow Y$ does not imply $Y \rightarrow X$

Marks \rightarrow Grade, Reg.No \rightarrow Name

 \succ The closure set is a set of all functional dependencies implied by a given set F.

 \succ It is denoted by F^{+.}

> Armstrong's Axioms:

R. No	Name	Marks	Dept	Couse
1	А	78	CS	C1
2	В	60	EE	C1
3	А	78	CS	C2
4	В	60	EE	C3
5	С	80	IT	C2
6	D	80	EC	C4

- > Armstrong's Axioms:
 - $\succ \text{ Reflection: if X Y, then } X \rightarrow Y$
 - ▷ Augmentation: if $X \rightarrow Y$, then $XZ \rightarrow YZ$
 - > Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
 - \blacktriangleright Decomposition: If X \rightarrow YZ, then X \rightarrow Y and X \rightarrow Z
 - > Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - ▷ Pseudotransitivity: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

Compute the closure of the following set of functional dependencies for a relation schema R(A, B, C, D, E), F = {A->BC, CD->E, B->D, E->A} and Find the candidate key.

- ≻Closure Dependencies:
 - > F Functional Dependencies
 - > F⁺ Closure Functional Dependencies
 - > X Attributes of F
 - \succ X⁺ Attributes of F⁺
 - ≻ F covers G, if $G^+ \subset F^+$
 - \succ F and G are equivalent if $F^+ = G^+$

➢Minimal Cover – a set of F of FD is a set of G of FD such that:

- Every dependencies in G is of the form X -> A, where a is a single attribute.
- > The closure F+ is equal to the closure G+.

> Types:

- ➢ Full functional dependency
- Partial functional dependency
- Transitive functional dependency

- > Types Full functional dependency
 - ➢ In a relation R, X and Y are attributes. X functionally determines Y.
 Subset of X should not functionally determine Y.
 - Marks cannot be determined either by student_no or course_no alone. It can be determined only using student_no and course_no together.
 - Marks is fully functionally dependent on {student_no, course_no}
 - ≻ RegisterNo. -> Name

> Types - Partial functional dependency

➤ Attribute Y is partially dependent on the attribute X only if it is dependent on a subset of attribute X.

➢For example course_name, Instructor_name are partially dependent on composite attributes {student_no, course_no} because course_no alone defines course_name, Instructor_name.

➤ (RegisterNo., Gender) -> Name

- Types Transitive Dependencies functional dependency
 X, Y and Z are 3 attributes in the relation R.
 - $X \rightarrow Y, \qquad Y \rightarrow Z, X \rightarrow Z$
 - For example, grade depends on marks and in turn mark depends on {student_no course_no}, hence Grade depends fully transitively on {student_no & course_no}.

- > Types Transitive Dependencies functional dependency
 - \succ X, Y and Z are 3 attributes in the relation R.
 - $X \rightarrow Y, \qquad Y \rightarrow Z, X \rightarrow Z$
 - ➢ RegisterNo. -> HoD,
 - RegisterNo. -> Deptid,
 - ➢ Deptid → HoD

≻ Uses:

- ➤ Test relations to see if they are legal under a given set of functional dependencies.
- > Specify constraints on the set of legal relations
- ➤ A specific instance of a relation schema must satisfy a functional dependency even if the functional dependency does not hold on all legal instances.

Thank You.....

DBMS/R.KAMALAKKANNAN/AP/CSE-IOT