

(Autonomous)

Code Converters

- The BINARY to GRAY CODE CONVERTER is a digital circuit that is used to convert the binary input into the corresponding equivalent gray code at its output.
- The circuit is a simple digital circuit which employs the use of Ex-OR gate IC for its operation. The output of the circuit (Gray code)finds various practical applications

(Autonomous)

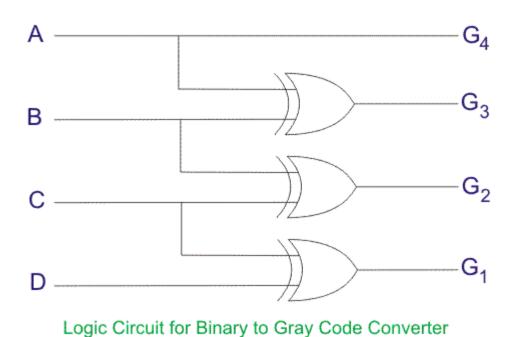
WHAT IS A BINARY CODE?

A binary code represents text or computer processor instructions using the binary number system's two binary digits, 0 and 1. The binary code assigns a bit string to each symbol or instruction.

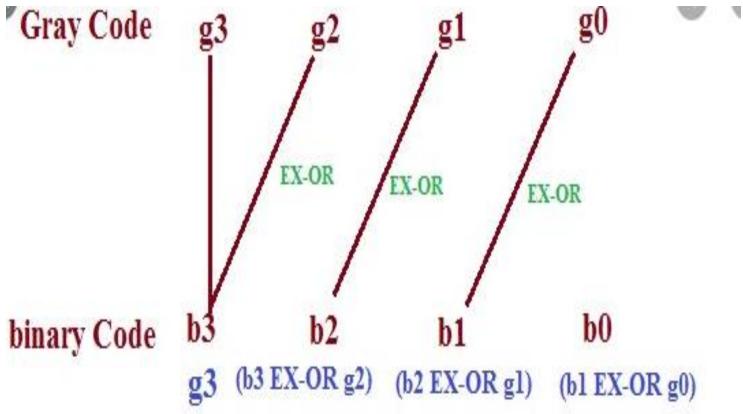
(Autonomous)

Binary-to-Gray code conversion

- The MSB in the Gray code is the same as corresponding MSB in the binary number.
- ii. Going from left to right, add each adjacent pair of binary code bits to get the next Gray code bit. <u>Discard carries</u>.
- convert 101102 to Gray code


Decimal	Binary	Gray Code		
0	0000	0000		
/1	0001	0001		
2	0010	0011		
3	0011	0010		
4	0100	0110		
5	0101	0111		
6	0110	0101		
7	0111	0100		

Decimal	Binary	1100 1101 1111 1110 1010		
8	1000			
9	1001			
10	1010			
11	1011			
12	1100			
13	1101	1011 1001 1000		
14	1110			
15	1111			

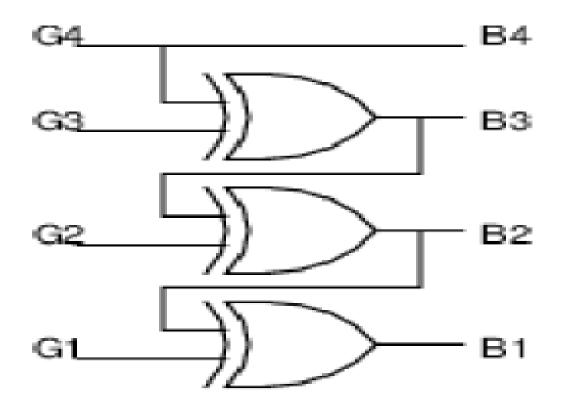


SIS INSTITUTIONS

(Autonomous)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Gray Code		Binary					
g ₃	g ₂	g ₁	g ₀	b ₃	b_2	b_1	b_0
О	0	0	0	0	0	0	0
О	0	0	1	0	0	0	1
О	0	1	0	0	0	1	1
О	0	1	1	О	О	1	0
О	1	0	0	0	1	1	1
О	1	0	1	0	1	1	0
О	1	1	0	О	1	0	0
О	1	1	1	О	1	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0



(Autonomous)

g. 7. Gray to binary conversion.

(Autonomous)

THANKYOU

