Quine-McCluskey (Tabular) Minimization

Quine-McCluskey (Tabular) Minimization

Two step process utilizing tabular listings to:

- Identify prime implicants (implicant tables)
- Identify minimal PI set (cover tables)

All work is done in tabular form

- Number of variables is not a limitation
- Basis for many computer implementations
- Don't cares are easily handled

Proper organization and term identification are key factors for correct results

Difficulty

Note: Can be

- $2 n$ minterms
- ~3n/n primes
primes
minterms 2^{n}

\checkmark Thus $O\left(2^{n}\right)$ rows and $O(3 n / n)$ columns and minimum covering problem is NP-complete.

Example

$F=\bar{w} \bar{x} \bar{y} \bar{z}+\bar{w} x \bar{y} z+\bar{w} x y \bar{z}+w x \bar{y} z$ $d=x \bar{y} \bar{z}+w \bar{y} \bar{z}+x y z+\bar{x} y \bar{z}+w y \bar{z}+\bar{w} \bar{x} \bar{y} z$
$w x y z$

Karnaugh map

$$
\sum_{c}=\bar{z}+x+\bar{w} \bar{y}
$$

Covering Table
Solution: $\sum_{m}=\bar{Z}+x$ (also $x+\bar{W} \bar{Y}$)
$\bar{z} \times \bar{w} \bar{y}$
$\begin{array}{llll}\text { Wxȳ } & 1 & 0 & 1\end{array}$
$\begin{array}{llll}\bar{W} X Y Z & 0 & 1 & 1\end{array}$
$\begin{array}{llll}\bar{W} X y Z & 1 & 1 & 0\end{array}$
$\begin{array}{llll}w x y z & 0 & 1 & 0\end{array}$

Covering Table

\checkmark Definition: An essential prime is any prime that uniquely covers a minterm of f.

Quine-McCluskey Minimization (cont.)
\checkmark Terms are initially listed one per line in groups

- Each group contains terms with the same number of true and complemented variables
- Terms are listed in numerical order within group
\checkmark Terms and implicants are identified using one of three common notations
- full variable form
- cellular form
- 1,0,- form

Example of Different Notations

$F(A, B, C, D)=\sum_{m}(4,5,6,8,10,13)$
Full variable Cellular 1,0,-

1

2. | $\overline{A B C} \bar{D}$ |
| :--- | | $\bar{A} B \bar{C} D$ |
| :--- |
| $\bar{A} B C \bar{D}$ |
| |

4	
8	0100
	1000
6	0101
10	0110
13	1010
1101	

Notation Forms

*-Full variable form: variables and complements in algebraic form

- hard to identify when adjacency applies
- very easy to make mistakes
\checkmark Cellular form: terms are identified by their decimal index value
- easy to tell when adjacency applies; indexes must differ by a power of two (one bit)
\checkmark 1,0,- form: terms are identified by their binary index value
- easier to translate to/from full variable form
- easy to identify when adjacency applies, one bit is different
- shows variable(s) dropped when adjacency is used
\checkmark Different forms may be mixed during the minimization

Implication Table

$$
(1,0,-)
$$

Quine-McCluskey Method

- Tabular method to systematically find all prime implicants $f(A, B, C, D)=\Sigma_{m}(1,2.5,6,7,9,10)+$ $\Sigma_{d}(0,13,15)$
- Part 1: Find all prime implicants
- Step 1: Fill Column 1 with onset and $D C$-set minterm indices. Group by number of true variables (\# of 1's).

NOTE THAT DCs ARE INCLUDED IN THIS STEP!

Implication Table		
Column I 0000		
0001		
0010		
0101		
0110		
1001		
1010		
0111		
1101		
1111		

Minimization - First Pass (1,0,-)

\checkmark Quine-McCluskey Method

- Tabular method to systematically find all prime implicants
- $f(A, B, C, D)=\Sigma_{m}(1,2.5,6,7,9,10)+$ $\Sigma_{d}(0,13,15)$
- Part 1: Find all prime implicants
- Step 2: Apply Adjacency - Compare elements of group with N 1's against those with N+11's. One bit difference implies adjacent. Eliminate variable and place in next column.
E.g., 0000 vs. 0100 yields 0-00 0000 vs. 1000 yields -000
When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants.
Repeat until nothing left.

Implication Table				
Column I		Column II		
0000	0	$000-$	0,1	
0001	1			
0010	2	$0-01$	1,5	
		-001	1,9	
0101	5	$0-10$	2,6	
0110	6	-010	2,10	
1001	9			
1010	10	$01-1$	5,7	
		-101	5,13	
0111	7	$011-$	6,7	
1101	13	$1-01$	9,13	
1111	15	-111	7,15	
		$11-1$	13,15	

Minimization - Second

 Pass (1,0,-)Quine-Mccluskey Methoc

- Step 2 cont.: Apply Adjacency Compare elements of group with N 1's against those with N+11's. One bit difference implies adjacent.
Eliminate variable and place in next column.
E.g., 0000 vs. 0100 yields 0-00 00-0 vs. 10-0 yields -0-0
- When used in a combination, mark with a check \checkmark.
- If cannot be combined, mark with a star *. THESE ARE THE PRIME IMPLICANTS.
Repeat until nothing left.
\checkmark The set of $*$ constitutes the Complete Sum \sum_{c}

Implication Table			
Column I	Column II		$\begin{aligned} & \text { Column II } \\ & - \text { 01 } \\ & \text { 1,5,9 } \\ & -1-1 \end{aligned} \quad 5,7,1$
$0000 \checkmark 0$	000-		
	00-0		
$0001 \checkmark 1$			
$0010 \checkmark 2$	0-01		
	-001		
$0101 \checkmark 5$	0-10	2,6	
$0110 \checkmark 6$	-010		
$1001 \checkmark 9$			
$1010 \checkmark 10$	01-1		
	-101	5,13	
$0111 \checkmark 7$	011-		
$1101 \checkmark 13$	1-01		
$1111 \checkmark 15$	-111		
	11-1	13,15	

Prime Implicants

$$
f(A, B, C, D)=\Sigma_{m}(1,2,5,6,7,9,10)+\Sigma_{d}(0,13,15)
$$

D

Prime Implicants:

$$
\begin{array}{ll}
000-=\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}} & 00-0=\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{D}} \\
0-10=\overline{\mathrm{A}} \mathrm{C} \overline{\mathrm{D}} & -010=\overline{\mathrm{B}} \mathrm{C} \overline{\mathrm{D}} \\
011-=\overline{\mathrm{A}} \mathrm{BC} & -1-1=\mathrm{B} D \\
\hline--01=\overline{\mathrm{C}} \mathrm{D} &
\end{array}
$$

Stage 2: find smallest set of prime implicants that cover the active-set Note that essential prime implicants must be in the final expression

Coverage Table

rows = prime implicants
columns $=\mathrm{ON}$-set elements (minterms)
place an " X " if ON -set element is covered by the primeimplicant
NOTE: DON'T INCLUDE DCs IN COVERAGE TABLE; THEY DON'T HAVE TO BE MANDATORY COVERED

\left.| | Coverage Chart | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| minterms | | | | | | |$\right]$

Row and Column Dominance

\checkmark Definition: Given two rows i_{1} and i_{2}, a row i_{1} is said to dominate i_{2} if it has checks in all columns in which i_{2} has checks, i.e. it is a superset of i_{2}

Example:

i_{1}	$x \times$	\times	$\times x$	\times
i_{2}	$\times x$	$\times x$		

\checkmark We can remove row i_{2}, because we would never choose i_{2} in a minimum cover since it can always be replaced by i_{1} (i_{2} is anymore a prime implicant).

DOMINATED ROWS (IMPLICANTS) CAN BE ELIMINATED

Row and Column

Dominance

\checkmark Definition: Given two colums j_{1} and j_{2}, if the set of primes of column j_{2} is contained in the set of primes of column j_{1}

Example:

$j 1$	$j 2$
x	
x	x
x	
x	x

\checkmark We can remove column j_{1} since we have to choose a prime to cover j_{2}, any such prime also covers j_{1}, that would result covered as well.

DOMINATED COLUMNS (MINTERMS) CAN BE ELIMINATED

Pruning the Covering

Table

1. Remove roll fows covered by essential primes (columns in row singletons). Put these primes in the cover G.
2. Group identical rows together and remove dominated rows.
3. Remove dominating columns. For equal columns, keep just one to represent them.
4. Newly formed row singletons define n-ary essential primes.
5. Go to 1 if covering table decreased.
\checkmark The algorithm may terminate successfully with a set of primes and an emty table.
\checkmark In case it terminate with a non empty table, the resulting reduced covering table is called the cyclic core. This has to be solved. A minimum solution for the cyclic core must be added to the resulting G.

Coverage Table (cont.)

Coverage Chart

		1	2	5	6	7	9	10
0,1	000-	X						
0,2	00-0		X					
2,6	0-10		X		X			
2,10	-010		X					x
6,7	011-				X	x		
1,5,9,13	--01	x		x			x	
5,7,13,15	-1-1			x		x		

If column has a single x, than the implicant associated with the row is essential.
It must appear in the minimum cover

Coverage Table (cont.)

Eliminate all columns covered by essential primes

Find minimum set of rows that cover the remaining columns

$$
F=\bar{B} C \bar{D}+\bar{A} B C+\bar{C} D
$$

Quine Mc Clunskey: Cyclic

Core example

$F=\sum_{m}(0,1,3,16,18,19,23,28,30,31)$
$V=0$
$V=1$

$F=v^{\prime} w^{\prime} y^{\prime} x^{\prime}+v^{\prime} w^{\prime} x^{\prime} z+w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+v w^{\prime} x^{\prime} z^{\prime}+v w^{\prime} x^{\prime} y+v w x z^{\prime}+v w x y+v w^{\prime} y z+v x y z$
$\begin{array}{llllllllll}A & B & C & D & E & F & G & H & I & J\end{array}$

Implication Table (1,0,-)

\checkmark Quine-McCluskey Method

- Tabular method to systematically find all prime implicants
- $f(v, w, x, y, z)=$乏m(0,1,3,16,18,19,23,28,30,31)
- Part 1: Find all prime implicants
- Step 1: Fill Column 1 with activeset and DC-set minterm indices. Group by number of true variables (\# of 1's).

19

$$
\begin{aligned}
& 28 \\
& 23 \\
& 30 \\
& 31
\end{aligned}
$$

Implication Table		
Column I	Column II	
00000	$0000-$	A: 0
00001	-0000	C: 0 1
10000	$000-1$	B: 1
00011	$100-0$	E:16 18
10010	-0011	D: 3 19
10011	$1001-$	F: 18 19
11100	$10-11$	I: 19 23
10111	$111-0$	G:28 30
11110	$1-111$	J: 2331
11111	$1111-$	H:30 31

$F=v^{\prime} w^{\prime} y^{\prime} x^{\prime}+v^{\prime} w^{\prime} x^{\prime} z+w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+v w^{\prime} x^{\prime} z^{\prime}+v w^{\prime} x^{\prime} y+v w x z^{\prime}+v w x y+v w^{\prime} y z+v x y z$

Quine Mc Clunskey

$$
F=\sum_{5}(0,1,3,16,18,19,23,28,30,31)
$$

Quine Mc Clunskey: Cyclic

Core example

A: 0
D: 31
E:16
$F=v^{\prime} w^{\prime} y^{\prime} x^{\prime}+v^{\prime} w^{\prime} x^{\prime} z^{2}+w^{\prime} x^{\prime} y^{\prime} z^{\prime}+w^{\prime} x^{\prime} y z+v w^{\prime} x^{\prime} z^{\prime}+v w^{\prime} x^{\prime} y+v w x z^{\prime}+v w x y+v w^{\prime} y z+v x y z$ $\begin{array}{llc}A & B \quad D \\ & G+J+A+D+E ;\end{array}$

E F G H I J
E.DIVYA/Digital Electronics/Unit-1

Generating Primes - multiple outputs
 (Westritions

Example: $f 1(x, y, z)=\sum_{m(3,5,7), f 2(x, y, z)}=\sum_{m(0,2,3)}$

$x y$								
0	1	1	-11					
1	0	1	1	$\quad f 1=y z+z x \quad$	$x y$	y		
:---	:---	:---	:---					
1	1	1						

Generating Primes - multiple outpsis

\checkmark Theorem: if p_{1} is a prime implicant for f_{1}, and p_{2} is a prime implicant for f_{2}, then if $p_{1} \cdot p_{2} \neq 0, p_{1} \cdot p_{2}$ is a prime implicant of $f_{1} . f_{2}$
\checkmark Theorem: if p_{3} is a prime implicant for $f_{1} . f_{2}$, then there exist p_{1} for f_{1}, and p_{2} for f_{2}, such that $p_{3}=p_{1} . p_{2}$
\checkmark We can conclude that all prime implicants of $f_{1} \cdot f_{2}$ are minimal sharable products for f_{1} and f_{2} : and that all prime implicants for $f_{1} \cdot f_{2}$ are created by products of prime implicants for f_{1} and f_{2}
\checkmark The way to use this is to make the prime implicants of $f_{1} \cdot f_{2}$ available to the minimizations of f_{1} and f_{2} by extending the table concept

Generating Primes - multiple outputs

\checkmark Procedure similar to single-output function, except: include also the primes of the products of individual functions

	f_{1} minterms	f_{2} minterms
Rows for f_{1} prime implicants: mark only f_{1} columns		
Rows for f_{2} prime implicants: mark only f_{2} columns		
Rows for $f_{1} f_{2}$ prime implicants: mark both f_{1} and f_{2} columns		

Minimize multiple-

output cover
\checkmark Example, cont.

$$
\begin{array}{lll}
f_{1} & m_{3}=011 & p_{1}=y z \\
& m_{5}=101 & p_{2}=x z \\
& m_{\bar{\tau}}=111 & \\
& & \\
& m_{0}=000 & p_{3}=\overline{x y} \\
f_{2} & m_{2}=010 & p_{4}=x^{-} z \\
& m_{3}=011 &
\end{array}
$$

\checkmark Note that row p_{5} dominat,s rows p_{1} and p_{3}, removingthese rows, the coverage is complete

100

100

Multiple-Level Optimization

\checkmark Multiple-level circuits: circuits that are not twolevels (with or without input and/or output inverters)
\checkmark Multiple-level circuits can have reduced gate input cost compared to two-level (SOP and POS) circuits, obviously augmenting the execution time
\checkmark Multiple-level optimization is performed by applying transformations to circuits represented by equations while evaluating cost and execution time

(a)
$G=A B C+A B D+E+A C F+A D F$

(c)
$G=(C+D)(A B+A F)+E$

$G=A B(C+D)+E+A F(C+D)$

(d)
$G=A(C+D)(B+F)+E$
E.DIVYA/Digital Electronics/Unit-1
\checkmark Factoring - finding a factored form from SOP or POS expression
\checkmark Elimination of G into F - expression function F as a function of G and some or all of its original variables
\checkmark Extraction - decomposition applied to multiple functions simultaneously

Transformation Examples

\checkmark Algebraic Factoring

$$
F=\bar{A} \bar{C} \bar{D}+\bar{A} B \bar{C}+A B C+A C \bar{D} \quad G=16
$$

- Factoring:
$F=\bar{A}(\bar{C} \bar{D}+B \bar{C})+A(B C+C \bar{D}) \quad G=18$
- Factoring again:

$$
F=\bar{A} \bar{C}(B+\bar{D})+A C(B+\bar{D}) \quad G=12
$$

- Factoring again:

$$
F=(\bar{A} \bar{C}+A C)(B+\bar{D})
$$

$G=10$

Transformation Examples

Elimination
Beginning with two functions: $X=B+C \quad Y=A+B$
$Z=\bar{A} X+C Y$
$G=10$

- Eliminating X and Y from Z :
$Z=\bar{A}(B+C)+C(A+B) \quad G=10$
- "Flattening" (Converting to SOP expression):
$Z=\bar{A} B+\bar{A} C+A C+B C$
$G=12$
- This has increased the cost, but has provided a new SOP expression for two-level optimization.
- Two-level Optimization
$Z=\bar{A} B+C$

$$
G=4
$$

- Increasing gate input count G temporarily can result in a final solution with a smaller G

Transformation Examples

Extraction

- Beginning with two functions:
$E=\bar{A} \bar{B} \bar{D}+\bar{A} B D$
$H=\bar{B} C \bar{D}+B C D$
$G=16$
- Finding a common factor and defining it as a function:
$F=\bar{B} \bar{D}+B D$
- We perform extraction by expressing E and H as the three functions:

$$
E=\bar{A} F, H=C F \quad G=10
$$

- The reduced cost G results from the sharing of logic between the two output functions

THANK YOU

