

Quine-McCluskey (Tabular) Minimization

Quine-McCluskey (Tabular) Minimization

Two step process utilizing tabular listings to:

- Identify prime implicants (implicant tables)
- Identify minimal PI set (cover tables) All work is done in tabular form
- Number of variables is not a limitation
- Basis for many computer implementations
- Don't cares are easily handled

Proper organization and term identification are key factors for correct results

Difficulty

Note: Can be

- 2n minterms
- ~ 3n/n primes

✓ Thus O(2ⁿ) rows and O(3ⁿ/n) columns and minimum covering problem is NP-complete.

2

Example $F = \overline{w}\overline{x}\overline{y}\overline{z} + \overline{w}\overline{x}\overline{y}z + \overline{w}\overline{x}\overline{y}\overline{z} + w\overline{x}\overline{y}z$ $d = x\overline{y}\overline{z} + w\overline{y}\overline{z} + xyz + \overline{x}y\overline{z} + wy\overline{z} + \overline{w}\overline{x}\overline{y}z$ w x yz WY \mathbf{O} dd dd1 Karnaugh map Ī dddX WY **W**X<u>y</u>Z 1 0 d () ()wxyz 0 1 1 $\sum_{c} = \overline{z} + x + \overline{w}\overline{y}$ **w**xy**z** 1 1 Covering Table () Solution: $\sum_{m} = \overline{z} + x$ wxyz 0 1 \mathbf{O} $(also X + \overline{W}\overline{V})$ 05.05.2020

Covering Table

 Definition: An essential prime is any prime that uniquely covers a minterm of f.

Quine-McCluskey Minimization (cont.)

- Terms are initially listed one per line
 in groups
 - Each group contains terms with the same number of true and complemented variables
 - Terms are listed in numerical order within group
- Terms and implicants are identified using one of three common notations
 - full variable form
 - cellular form
 - 1,0,- form

Example of Different Notations

 $F(A, B, C, D) = \sum_{m} (4,5,6,8,10,13)$

	Full variable	Cellular	1,0,-
1	ABCD	4	0100
	ABCD	8	1000
2	ABCD	5	0101
	ABCD	6	0110
	ABCD	10	1010
3	ABCD	13	1101

Notation Forms

Full variable form: variables and complements in algebraic form

- hard to identify when adjacency applies
- very easy to make mistakes
- Cellular form: terms are identified by their decimal index value
 - easy to tell when adjacency applies; indexes must differ by a power of two (one bit)
- ✓ 1,0,- form: terms are identified by their binary index value
 - easier to translate to/from full variable form
 - easy to identify when adjacency applies, one bit is different
 - shows variable(s) dropped when adjacency is used
- ✓ Different forms may be mixed during the minimization

Implication Table (1,0,-)

Quine-McCluskey Method	Imp	lication Table
 Tabular method to systematically find all prime implicants 	Column I 0000	
$f(A,B,C,D) = \Sigma_m(1,2.5,6,7,9,10) + \Sigma_d(0,13,15)$ • Part 1: Find all prime implicants	0001 0010	
 Step 1: Fill Column 1 with onset and DC-set minterm indices. Group by number of true variables (# of 1's). 	0101 0110 1001 1010	
NOTE THAT DCs <u>ARE</u> INCLUDED IN THIS STEP!	0111 1101 1111	

Minimization - First Pass (1,0,-)

Implication Table					
Column	Ι	Column	II		
0000	0	000-	0,1		
		00-0	0,2		
0001	1				
0010	2	0-01	1,5		
		-001	1,9		
0101	5	0-10	2,6		,
0110	6	-010	2,10		
1001	9				
1010	10	01-1	5,7		
		-101	5,13		
0111	7	011-	6,7		
1101	13	1-01	9,13		
1111	15	-111	7,15		
		11-1	13,15		

/	Quine-	McC	luskey	Method
---	--------	-----	--------	--------

- Tabular method to systematically find all prime implicants
- $f(A,B,C,D) = \Sigma_m(1,2.5,6,7,9,10) + \Sigma_d(0,13,15)$
- Part 1: Find all prime implicants
- Step 2: Apply Adjacency Compare elements of group with N 1's against those with N+11's. One bit difference implies adjacent. Eliminate variable and place in next column.

E.g., 0000 vs. 0100 yields 0-00 0000 vs. 1000 yields -000

When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants.

Repeat until nothing left.

Minimization - Second

- Pass (1,0,-) Quine-McCluskey Method
- Step 2 cont.: Apply Adjacency -Compare elements of group with N 1's against those with N+1 1's. One bit difference implies adjacent. Eliminate variable and place in next column.

E.g., 0000 vs. 0100 yields 0-00 00-0 vs. 10-0 yields -0-0

- When used in a combination, mark with a check ✓.
- If cannot be combined, mark with a star *. THESE ARE THE PRIME IMPLICANTS. Repeat until nothing left.
- ✓ The set of * constitutes the Complete Sum \sum_{c}

Implication Table					
Column I 0000 ✓ 0 0001 ✓ 1	Column II 000- 0,1 00-0 0,2	Column II 01 1,5,9 - 1-1 5,7,1			
0010 ✓ 2	0-01 1,5 -001 1,9				
$0101 \checkmark 5$ $0110 \checkmark 6$ $1001 \checkmark 9$	0-10 2,6 -010 2,10				
1010 ✓ 10	01-1 5,7 -101 5,13				
0111 ✓ 7 1101 ✓ 13	011- 6.7 1-01 9,13				
1111 🗸 15	-111 7,15 11-1 13,15				

Prime Implicants

 $f(A,B,C,D) = \Sigma_m (1,2,5,6,7,9,10) + \Sigma_d (0,13,15)$

Stage 2: find smallest set of prime implicants that cover the active-set Note that essential prime implicants must be in the final expression

Coverage Table

rows = prime implicants

columns = ON-set elements (minterms)

place an "X" if ON-set element is covered by the prime implicant

NOTE: DON'T INCLUDE DCs IN COVERAGE TABLE; THEY DON'T HAVE TO BE MANDATORY COVERED

 Definition: Given two rows i₁ and i₂, a row i₁ is said to dominate i₂ if it has checks in all columns in which i₂ has checks, i.e. it is a superset of i₂

Example:

i ₁	хx	X	ХX	X
i ₂	хx		хx	

 i_1 dominates i_2

 ✓ We can remove row i₂, because we would never choose i₂ in a minimum cover since it can always be replaced by i₁ (i₂ is anymore a prime implicant).

DOMINATED ROWS (IMPLICANTS) CAN BE ELIMINATED

Row and Column Dominance

✓ Definition: Given two colums j_1 and j_2 , if the set of primes of column j_2 is contained in the set of primes of column j_1

Example:	j1 ×	j2
	×	×
j ₂ dominates j ₁	×	
	×	×

 $\checkmark \quad \mbox{We can remove column } j_1 \mbox{ since we have to choose a prime to cover} \\ j_2, \mbox{ any such prime also covers } j_1, \mbox{ that would result covered as well.}$

DOMINATED COLUMNS (MINTERMS) CAN BE ELIMINATED

Pruning the Covering

- Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
- 2. Group identical rows together and remove dominated rows.
- 3. Remove dominating columns. For equal columns, keep just one to represent them.
- 4. Newly formed row singletons define n-ary essential primes.
- 5. Go to 1 if covering table decreased.
- The algorithm may terminate successfully with a set of primes and an emty table.
- ✓ In case it terminate with a non empty table, the resulting reduced covering table is called the cyclic core. This has to be solved. A minimum solution for the cyclic core must be added to the resulting G.

Coverage Table (cont.)

<u>Coverage Chart</u>

If column has a single x, than the implicant associated with the row is essential. It must appear in the minimum cover

Coverage Table (cont.)

Eliminate all columns covered by essential primes

Find minimum set of rows that cover the remaining columns

$$F = \overline{B}C\overline{D} + \overline{A}BC + \overline{C}D$$

Implication Table (1,0,-)

J

COUMBA	Took 19				INSTITUTIONS	
√	Quine-McCluskey Method		Irr	plication Tab	ole	
•	Tabular method to systematically find all prime implicants f(x w x x z) =	0	Column I 00000	Column II 0000-	A: 0	
	$\Sigma m(0,1,3,16,18,19,23,28,30,31)$	1	00001	-0000	<i>C</i> : 01	
•	Part 1: Find all prime implicants	16	1 0000	000-1	B: 1	
•	Step 1: Fill Column 1 with active- set and DC-set minterm indices.	3 18	00 011	100-0	E:16 1	8
	Group by number of true variables (# of 1's).	⁵ 19	10010	1001-	F: 18 1	9
		28	11100	10-11	I: 19 2	3
		23	10 11 1	111-0	G:28 3	30
		30	111 10	1-111	J: 23 3	1
		31	11111	1111-	H: 30 3	31

F=v'w'y'x'+v'w'x'z+w'x'y'z'+w'x'yz+vw'x'z'+vw'x'y+vwxz'+vwy+vw'yz+vxyz

D

B

Α

C

F

F

E.DIVYA/Digital Electronics/Unit-1

G

G+J+A+D+E;

Generating Primes – multiple outp

- Theorem: if p_1 is a prime implicant for f_1 , and p_2 is a prime implicant for f_2 , then if $p_1.p_2 \neq 0$, $p_1.p_2$ is a prime implicant of $f_1.f_2$
- ✓ Theorem: if p_3 is a prime implicant for f_1 . f_2 , then there exist p_1 for f_1 , and p_2 for f_2 , such that $p_3=p_1$. p_2
- ✓ We can conclude that all prime implicants of $f_1.f_2$ are minimal sharable products for f_1 and f_2 : and that all prime implicants for $f_1.f_2$ are created by products of prime implicants for f_1 and f_2
- ✓ The way to use this is to make the prime implicants of $f_1.f_2$ available to the minimizations of f_1 and f_2 by extending the table concept

Generating Primes – multiple

outputs

 Procedure similar to single-output function, except: include also the primes of the products of individual functions

	f_1 minterms	f ₂ minterms
Rows for f ₁ prime implicants: mark only f ₁ columns		
Rows for f ₂ prime implicants: mark only f ₂ columns		
Rows for f ₁ f ₂ prime implicants: mark both f ₁ and f ₂ columns		

Minimize multipleoutput cover ✓ Example, cont. m_3 m_5 m_7 m_0 m_2 p_1 $m_3 = 0.11$ $p_1 = y z$ \checkmark **p**₂ $f_1 m_5 = 101 p_2 = x z$ **p**₃ $m_{\tau} = 111$ **p**₄ $m_0 = 0.00$ $p_3 = x y$ **p**₅

Note that row p₅ dominates
 rows p₁ and p₃, removing these
 rows, the coverage is complete

 $f_2 m_3 = 0.11 p_5 = x y z$

 $f_2 m_2 = 0.10 p_4 = x^{-2}z$

 $m_3 = 0.11$

Min cover has 3 primes: F = { p₂, p₄, p₅ }

 $\begin{array}{c} f_2 & 011 \\ 010 \\ 010 \\ 010 \\ 010 \\ 010 \\ 100 \\ 100 \end{array}$

E.DIVYA/Digital Electronics/Unit-1

 \mathbf{m}_3

 \mathbf{m}_3

 \checkmark

p₁

p₃

p₅

 \mathbf{m}_3

 \checkmark

Multiple-Level Optimization

- Multiple-level circuits: circuits that are not twolevels (with or without input and/or output inverters)
- Multiple-level circuits can have reduced gate input cost compared to two-level (SOP and POS) circuits, obviously augmenting the execution time
- Multiple-level optimization is performed by applying transformations to circuits represented by equations while evaluating cost and execution time

Multi level circuits – circuit analysis

G = ABC+ABD+E+ACF+ADF

(d)

G = (C+D)(AB+AF)+E

G = A(C+D)(B+F)+E

E.DIVYA/Digital Electronics/Unit-1

G = AB(C+D)+E+AF(C+D)

- Factoring finding a factored form from SOP or POS expression
- Elimination of G into F expression function F as a function of G and some or all of its original variables
- **Extraction** decomposition applied to multiple
- functions simultaneously

Transformation Examples

✓ Algebraic Factoring $F = \overline{ACD} + \overline{ABC} + ABC + ACD$ G = 16• Factoring: G = 18 $F = \overline{A} (\overline{C} \overline{D} + B\overline{C}) + A (BC + C\overline{D})$ • Factoring again: G = 12 $F = \overline{A} \overline{C} (B + \overline{D}) + AC (B + \overline{D})$ Factoring again: G = 10 $F = (\overline{AC} + AC)(B + D)$

Transformation Examples

Elimination

Beginning with two functions: X = B + C Y = A + B $Z = \overline{A} X + CY$ G = 10

- Eliminating X and Y from Z:
- $Z = \overline{A} (B + C) + C (A + B) \qquad G = 10$
- "Flattening" (Converting to SOP expression):

 $Z = \overline{A} B + \overline{A} C + AC + BC \qquad G = 12$

- This has increased the cost, but has provided a new SOP expression for two-level optimization.
- Two-level Optimization
- $Z = \overline{A}B + C$

G = 4

• Increasing gate input count G temporarily can result in a final solution with a smaller G

Transformation Examples

Extraction

- Beginning with two functions:
- $\mathsf{E} = \overline{\mathsf{A}} \overline{\mathsf{B}} \overline{\mathsf{D}} + \overline{\mathsf{A}} \mathsf{B} \mathsf{D}$
- $H = \overline{B}C\overline{D} + BCD$
 - Finding a common factor and defining it as a function:
- $\mathbf{F} = \overline{B}\overline{D} + BD$
 - We perform extraction by expressing E and H as the three functions:
- $E = \overline{A}F, H = CF$

G = 10

G = 16

• The reduced cost G results from the sharing of logic between the two output functions

THANK YOU