Quine Mc Clusky(Tabulation) method

Quine Mc Clusky method

A systematic simplification procedure to reduce a minterm expansion to a minimum sum of products.
Use $X Y+X Y^{\prime}=X$ to eliminate as many as literals as possible.
The resulting terms = prime implicants. Use a prime implicant chart to select a minimum set of prime implicants.

Determination of Prime Implicants

$\sqrt{ }$ Eliminate literals

Two terms can be combined if they differ in exactly one variable.

$$
\begin{aligned}
& A B^{\prime} C D^{\prime}+A B^{\prime} C D=A B^{\prime} C \\
& \frac{1010}{X} Y+\frac{1011}{X} Y^{\prime}=\frac{101}{X}
\end{aligned}
$$

$A^{\prime} B C^{\prime} D+A^{\prime} B C D^{\prime}$ (won't combine)
0101 + 0110 (check \# of 1's)

We need to compare and combine whenever possible.

Sorting to Reduce Comparisons

$\sqrt{ }$ Sort into groups according to the

$$
F(a, b, c . d)=\sum m(0,1,2,5,6,7,8,9,10,14)
$$

Group $0 \quad 0 \quad 0000$
Group 110001
20010
81000
Group 250101
60110
$9 \quad 1001$
101010
Group 370111
141110

No need for comparisons
(1) Terms in nonadjacent group
(2) Terms in the same group

Comparison of adjacent groups

Use $\mathrm{X}+\mathrm{X}=\mathrm{X}$ repeatedly between adjacent groups
Those combined are checked off.
Combine terms that have the same dashes and differ one in the number of 1's. (for column II and column III)

$$
f=\underset{(1,5)}{a^{\prime} c^{\prime} d}+\underset{(5,7)}{a^{\prime} b d}+\underset{(6,7)}{a^{\prime} b c}+\underset{(0,1,8,9)}{b^{\prime} c^{\prime}}+\underset{(0,2,8,10)}{b^{\prime} d^{\prime}}+\underset{(2,6,10,14)}{c d^{\prime}}
$$

$$
f=a^{\prime} b d+b^{\prime} c^{\prime}+c d^{\prime}
$$

Determination of Prime Implicants

Column I			Column II		Column III	
group 0	0	0000	0, 1	000- \checkmark	0, 1, 8, 9	-00-
	1	0001	0, 2	00-0 \checkmark	0, 2, 8, 10	$-0-0$
group 1	2	0010	0, 8	$-000 \checkmark$	-0,8, 1,9	-00 $=$
	8	1000	1,5	0-01	0,8,2,10	-0-0
group $2\{$	5	0101	1,9	-001 ,	2, 6, 10, 14	$--10$
	6	0110	2,6	0-10	2, 10, 6, 14	- -10
	9	1001	2,10	$-010 \checkmark$		
	10	1010	8,9	100- \checkmark		
group 3		0111	8, 10	10-0		
	14	1110	5,7	01-1		
			6,7	011 -		
			6,14	-110 ,		
			10, 14	1-10		

Prime Implicants

The terms that have not been checked off are called prime implicants.

$$
\begin{aligned}
f & =0-01+01-1+011-+-00-+-0-0+--10 \\
& =\underline{a^{\prime} c^{\prime} d}+a^{\prime} b d+\underline{a^{\prime} b c}+b^{\prime} c^{\prime}+\underline{b^{\prime} d^{\prime}}+c d^{\prime}
\end{aligned}
$$

Each term has a minimum number of literals, but minimum SOP for f :

$$
\begin{aligned}
& f=a^{\prime} b d+b^{\prime} c^{\prime}+c d^{\prime} \\
& \quad\left(a^{\prime} b d, c d^{\prime}=>a^{\prime} b c\right)\left(a^{\prime} b d, b^{\prime} c^{\prime}=>a^{\prime} c^{\prime} d\right)\left(b^{\prime} c^{\prime}, c d^{\prime}=>b^{\prime} d^{\prime}\right)
\end{aligned}
$$

Definition of Implicant

Definition

Given a function of F of n variables, a product term P is an implicant of F iff for every combination of values of the n variables for which $P=1, F$ is also equal to 1.

Every minterm of F is an implicant of F .
Any term formed by combining two or more minterms is an implicant.
If F is written in SOP form, every product term is an implicant.
Example: $f(a, b, c)=a^{\prime} b^{\prime} c^{\prime}+a b^{\prime} c^{\prime}+a b^{\prime} c+a b c=b^{\prime} c^{\prime}+a c$ If $a^{\prime} b^{\prime} c^{\prime}=1$, then $F=1$, if $a c=1$, then $F=1 . a^{\prime} b^{\prime} c^{\prime}$ and $a c$ are implicants.
If $b c=1$, (but $a=0$), $F=0$, so $b c$ is not an implicant of F.

Definition of Prime Implicant

Definition

A prime implicant of a function F is a product term implicant which is no longer an implicant if any literal is deleted from it.
Example: $f(a, b, c)=a^{\prime} b^{\prime} c^{\prime}+a b^{\prime} c^{\prime}+a b^{\prime} c+a b c=b^{\prime} c^{\prime}+a c$ Implicant $a^{\prime} b^{\prime} c^{\prime}$ is not a prime implicant. Why? If
a^{\prime} is deleted, $b^{\prime} c^{\prime}$ is still an implicant of F.
$b^{\prime} c^{\prime}$ and ac are prime implicants.
Each prime implicant of a function has a minimum number of literals that no more literals can be eliminated from it or by combining it with other terms.

Quine McClusky Procedure

QM procedure:

Find all product term implicants of a function
Combine non-prime implicants.
Remaining terms are prime implicants.
A minimum SOP expression consists of a sum of some (not necessarily all) of the prime implicants of that function.

We need to select a minimum set of prime implicants.
If an SOP expression contains a term which is not a prime implicant, the SOP cannot be minimum.

Prime Implicant Chart Chart layout

Top row lists minterms of the function
All prime implicants are listed on the left side.
Place x into the chart according to the minterms that form the corresponding prime implicant.

Essential prime implicant

If a minterm is covered only by one prime implicant, that prime implicant is called essential prime implicant. (9 \& 14).
Essential prime implicant must be included in the minimum sum of the function.

Selection of Prime Implicants

$\sqrt{ }$ Cross out the row of the selected essential prime implicants
$\sqrt{ }$ The columns which correspond to the minterms covered by the selected prime implicants are also crossed out.
$\sqrt{ }$ Select a prime implicant that covers the remaining columns. This prime implicant is not essential.

A Cyclic Prime Implicant Chart

Two or more X's in every column.

$$
\begin{gathered}
F=\sum m(0,1,2,5,6,7) \\
F=a^{\prime} b^{\prime}+b c^{\prime}+a c . \text { (by } \\
\text { try and error). No } \\
\text { guarantee for this to } \\
\text { be minimum. }
\end{gathered}
$$

Simplification Using MapEntered Variables

Extend K-map for more variables.

When E appears in a square, if $E=1$, then the corresponding minterm is present in the function G.

$$
G(A, B, C, D, E, F)=m_{0}+m_{2}+m_{3}+E m_{5}+E m_{7}+F m_{9}+m_{11}+m_{15}+\text { (don't care terms) }
$$

(a)

$$
M S_{0}=A^{\prime} B^{\prime}+A C D
$$

(b)

(c)

(d)

Map-Entered Variable

$F(A, B, C, D)=A^{\prime} B^{\prime} C+A^{\prime} B C+A^{\prime} B C^{\prime} D+A B C D+\left(A B^{\prime} C\right)$, (don't care)
Choose D as a map-entered variable.
When $D=0, F=A^{\prime} C$ (Fig. a) When $D=1, F=C+A^{\prime} B$ (Fig. b) two 1's are changed to x^{\prime} s since they are covered in Fig. a.

General View for Map-Entered Variable Method

Given a map with variables P_{1}, P_{2} etc, entered into some of the squares, the minimum SOP form of F is as follows:
$\mathrm{F}=\mathrm{MS}_{0}+\mathrm{P}_{1} \mathrm{MS}_{1}+\mathrm{P}_{2} \mathrm{MS}_{2}+\ldots$ where
MS_{0} is minimum sum obtained by setting $\mathrm{P}_{1}=\mathrm{P}_{2} . .=0$
$M S_{1}$ is minimum sum obtained by setting $P_{1}=1, P_{j}=0(j \neq 1)$, and replacing all 1's on the map with don't cares.

Previously, $G=A^{\prime} B^{\prime}+A C D+E A^{\prime} D+F A D$.

THANK YOU

