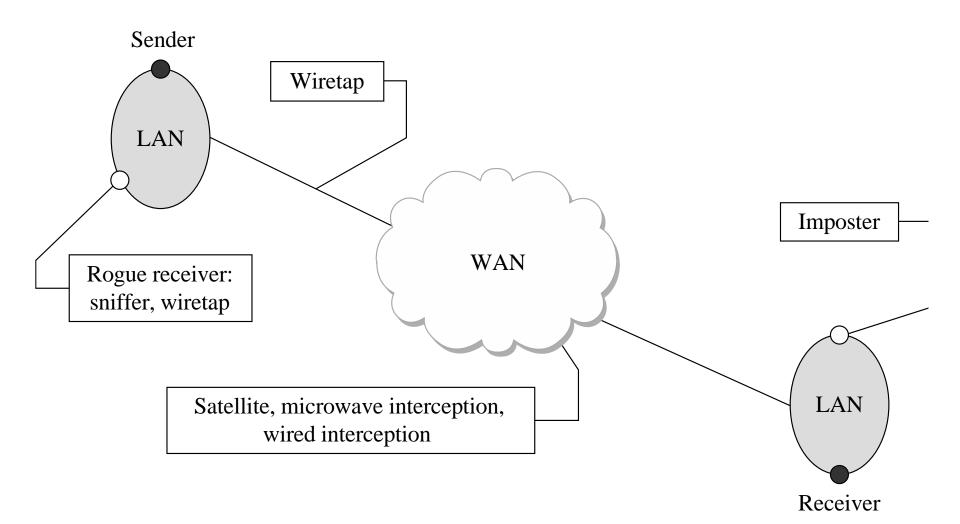


SECURITY IN COMPUTING, FIFTH EDITION

Chapter 6: Networks

Objectives for Chapter 6

- Networking basics
- Network threats and vulnerabilities
- WiFi security
- Denial-of-service attacks
- Network encryption concepts and tools
- Types of firewalls and what they do
- Intrusion detection and prevention systems
- Security information and event management tools


Network Transmission Media

- Cable
- Optical fiber
- Microwave
- WiFi
- Satellite communication

Communication Media Vulnerability

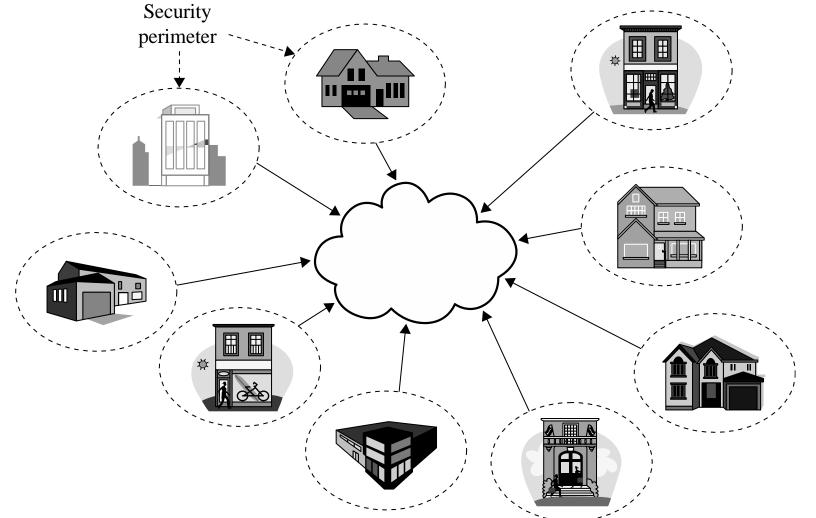
Communication Media Pros/Cons

Medium Wire	Strengths	Weaknesses		
	 Widely used Inexpensive to buy, install, maintain 	 Susceptible to emanation Susceptible to physical wiretapping 		
Optical fiber	Immune to emanationDifficult to wiretap	Potentially exposed at connection points		
Microwave	Strong signal, not seriously affected by weather	 Exposed to interception along path of transmission Requires line of sight location Signal must be repeated approximately every 30 miles (50 kilometers) 		
Wireless (radio, WiFi)	 Widely available Built into many computers 	 Signal degrades over distance; suitable for short range Signal interceptable in circular pattern around transmitter 		
Satellite	Strong, fast signal	 Delay due to distance signal travels up and down Signal exposed over wide area at receiving end 		

The OSI Model

7–Application	
6–Presentation	
5–Session	
4–Transport	
3–Network	
2–Data Link	
1–Physical	

7–Application	
6–Presentation	
5–Session	
4–Transport	
3–Network	
2–Data Link	
1–Physical	


Threats to Network Communications

- Interception, or unauthorized viewing
- Modification, or unauthorized change
- Fabrication, or unauthorized creation
- Interruption, or preventing authorized access

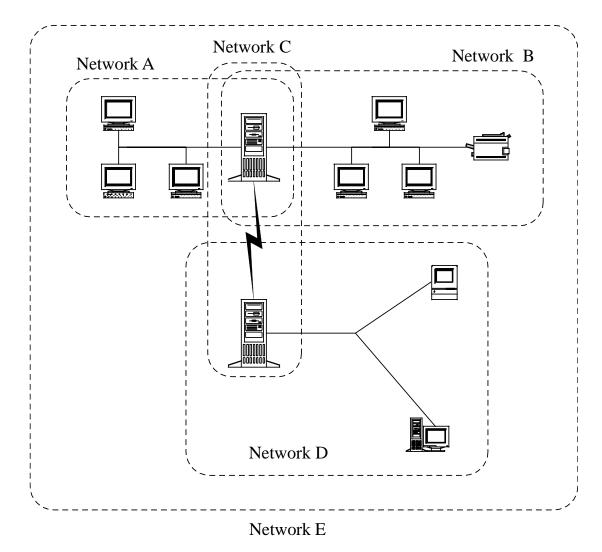
Security Perimeters

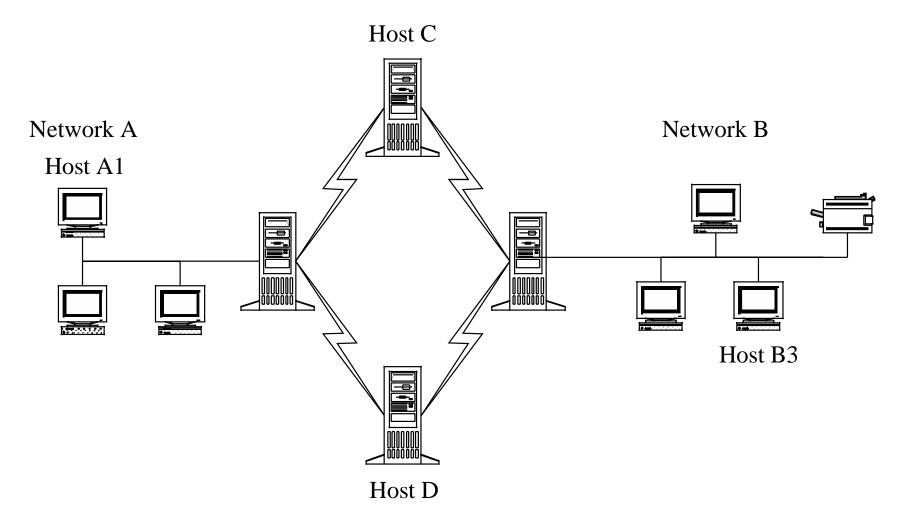
From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

8

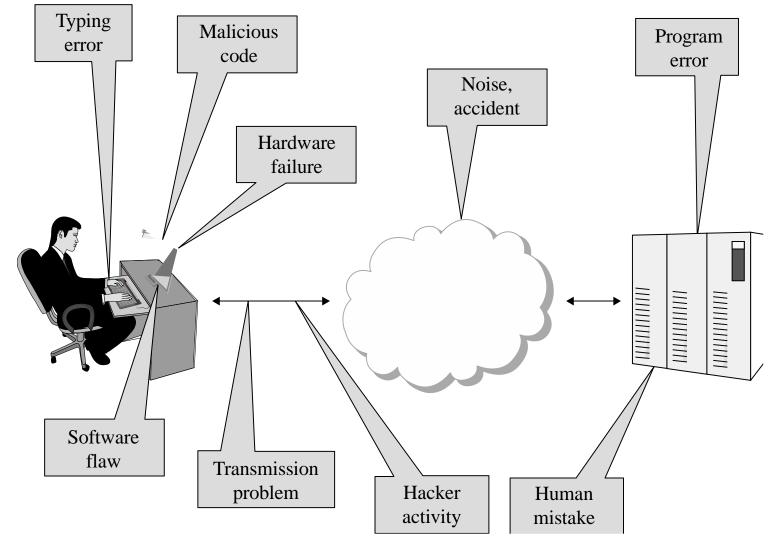
What Makes a Network Vulnerable to

Interception? • Anonymity

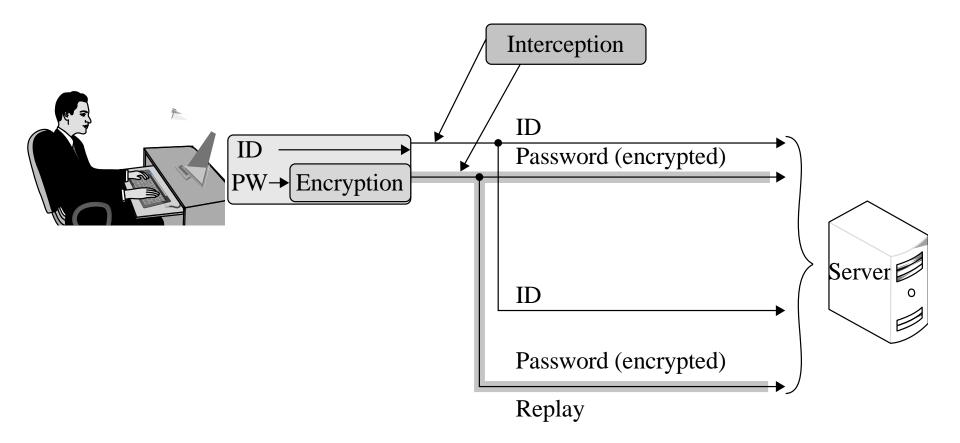

- - An attacker can attempt many attacks, anonymously, from thousands of miles away
- Many points of attack
 - Large networks mean many points of potential entry
- Sharing
 - Networked systems open up potential access to more users than do single computers
- System complexity
 - One system is very complex and hard to protect; networks of many different systems, with disparate OSs, vulnerabilities, and purposes are that much more complex
- Unknown perimeter
 - Networks, especially large ones, change all the time, so it can be hard to tell which systems belong and are behaving, and impossible to tell which systems bridge networks
- Unknown path
 - There may be many paths, including untrustworthy ones, from one host to another


Unknown Perimeter

Unknown Path


Modification and Fabrication

- Data corruption
 - May be intentional or unintentional, malicious or nonmalicious, directed or random
- Sequencing
 - Permuting the order of data, such as packets arriving in sequence
- Substitution
 - Replacement of one piece of a data stream with another
- Insertion
 - A form of substitution in which data values are inserted into a stream
- Replay
 - Legitimate data are intercepted and reused


Sources of Data Corruption

Simple Replay Attack

Interruption: Loss of Service

- Routing
 - Internet routing protocols are complicated, and one misconfiguration can poison the data of many routers
- Excessive demand
 - Network capacity is finite and can be exhausted; an attacker can generate enough demand to overwhelm a critical part of a network
- Component failure
 - Component failures tend to be sporadic and unpredictable, and will cause loss of service if not planned for

Port Scanning

Nmap scan report						
192.168.1.1 / somehost.com (online) ping results						
address: 192.168.1.1 (ipv4)						
hostnames: somehost.com (user)						
The 83 ports scanned but not shown below are in state: closed						
Port State	Service		Product	Version	Extra info	
21 tcp open	ftp	syn-ack	Proftpd	1.3.1		
22 tcp filtered	ssh	no-response				
25 tcp filtered	smtp	no-response				
80 tcp open	http	syn-ack	Apache	2.2.3	(Centos)	
106 tcp open	pop3pw	syn-ack	poppass			
110 tcp open	pop3	syn-ack	Courier	pop3d		
111 tcp filtered	rpcbind					
113 tcp filtered	auth	no-response				
143 tcp open	imap	syn-ack	Courie	r Imapd	released	
2004		V			(- · · · · · · · · · · · · · · · · · ·	
443 tcp open	http	syn-ack	Apache	2.2.3	(CentOS)	
465 tcp open	unknown					
646 tcp filtered	ldp	no-response	-	ware and		
993 tcp open	imap	syn-ack	Courier	Imapo	released	
2004		ave a alc				
995 tcp open	- 6-	syn-ack				
2049 tcp filtered	nfs	no-response	Mucol	F 0 4F		
3306 tcp open	mysql	syn-ack	MySQL	5.0.45		
8443 tcp open 34 sec. scanned	unknown	syn-ack				
1 host(s) scanned 1 host(s) online						
0 host(s) offline						

Failed Countermeasure: WEP

- Wired equivalent privacy, or WEP, was designed at the same time as the original 802.11 WiFi standards as the mechanism for securing those communications
- Weaknesses in WEP were first identified in 2001, four years after release
- More weaknesses were discovered over the course of years, until any WEP-encrypted communication could be cracked in a matter of minutes

How WEP Works

- Client and access point (AP) have a pre-shared key
- AP sends a random number to the client, which the client then encrypts using the key and returns to the AP
- The AP decrypts the number using the key and checks that it's the same number to authenticate the client
- Once the client is authenticated, the AP and client communicate using messages encrypted with the key

WEP Weaknesses

- Weak encryption key
 - WEP allows to be either 64- or 128-bit, but 24 of those bits are reserved for initialization vectors (IV), thus reducing effective key size to 40 or 140 bits
 - Keys were either alphanumeric or hex phrases that users typed in and were therefore vulnerable to dictionary attacks
- Static key
 - Since the key was just a value the user typed in at the client and AP, and since users rarely changed those keys, one key would be used for many months of communications
- Weak encryption process
 - A 40-bit key can be brute forced easily. Flaws that were eventually discovered in the RC4 encryption algorithm WEP uses made the 104-bit keys easy to crack as well

WEP Weaknesses (cont.)

- Weak encryption algorithm
 - WEP used RC4 in a strange way (always a bad sign), which resulted in a flaw that allowed attackers to decrypt large portions of any WEP communication
- IV collisions
 - There were only 16 million possible values of IV, which, in practice, is not that many to cycle through for cracking. Also, they were not as randomly selected as they should have been, with some values being much more common than others
- Faulty integrity check
 - WEP messages included a checksum to identify transmission errors but did not use one that could address malicious modification
- No authentication
 - Any client that knows the AP's SSID and MAC address is assumed to be legitimate

WPA (WiFi Protected Access)

- WPA was designed in 2003 as a replacement for WEP and was quickly followed in 2004 by WPA2, the algorithm that remains the standard today
- Non-static encryption key
 - WPA uses a hierarchy of keys: New keys are generated for confidentiality and integrity of each session, and the encryption key is automatically changed on each packet
 - This way, the keys that are most important are used in very few places and indirect ways, protecting them from disclosure
- Authentication
 - WPA allows authentication by password, token, or certificate

WPA (cont.)

- Strong encryption
 - WPA adds support for AES, a much more reliably strong encryption algorithm
- Integrity protection
 - WPA includes a 64-bit cryptographic integrity check
- Session initiation
 - WPA sessions begin with authentication and a four-way handshake that results in separate keys for encryption and integrity on both ends
- While there are some attacks against WPA, they are either of very limited effectiveness or require weak passwords

