
SECURITY IN

COMPUTING,

FIFTH EDITION
Chapter 5: Operating Systems

1

Chapter 5 Objectives

• Basic security functions provided by operating systems

• System resources that require operating system

protection

• Operating system design principles

• How operating systems control access to resources

• The history of trusted computing

• Characteristics of operating system rootkits

2

History of Operating Systems

• Single-user systems, no OS

• Multiprogrammed OS, aka monitors

• Multiple users

• Multiple programs

• Scheduling, sharing, concurrent use

• Personal computers

3

Protected Objects

• Memory

• Sharable I/O devices, such as disks

• Serially reusable I/O devices, such as printers

• Sharable programs and subprocedures

• Networks

• Sharable data

4

OS Layered Design

Hardware

Security Functions

Synchronization, Allocation

Scheduling, Sharing,

Memory Management

File Systems, Device Allocation

Utility Functions

Compilers, Data base Managers

User Processes

Subprocesses of User Processes

Security
Kernel

Operating
System
Kernel

Operating
System

5

Functions Spanning Layers

User Authentication Module

User
Interface

User ID
Lookup

Authentication
Data Comparison

Authentication
Data Updates

Most

Trusted

Code

Least

Trusted

Code

6

Modular OS Design

Users Users Users Users Users

User Mode

User Interface

System Services Interface

Privileged Mode

File A/V Net Backup ShellObjectSec

I/O Synch Memory Comm SecTime

Primitive Services

Hardware Interface and Abstraction

Microkernel Kernel Mode Drivers

Hardware

7

Virtualization

• With virtualization, the OS presents each user with just

the resources that user should see

• The user has access to a virtual machine (VM), which

contains those resources

• The user cannot access resources that are available to

the OS but exist outside the VM

• A hypervisor, or VM monitor, is the software that

implements a VM

• Translates access requests between the VM and the OS

• Can support multiple OSs in VMs simultaneously

• Honeypot: A VM meant to lure an attacker into an

environment that can be both controlled and monitored

8

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Separation and Sharing

• Methods of separation:

• Physical

• Temporal

• Logical

• Cryptographic

• Methods of supporting separation/sharing:

• Do not protect

• Isolate

• Share all or share nothing

• Share but limit access

• Limit use of an object

9

Hardware Protection of Memory
Memory

Operating System

User Program Space

Addresses

 0

n

n + 1

High

Hardware
Address

Limitation

Addressing
Range

10

Fence Registers
Address

Limit
Register

Memory

Operating

System Version 2

User Program
Space

Addresses
 0

p

p + 1

High

p + 1

Address
Limit

Register

Memory

Operating

System Version 1

User Program
Space

Addresses
 0

n

n + 1

High

n + 1

Addressing
Range

Addressing
Range

11

Base/Bounds Registers
Memory

Operating
System

User A
Program Space

Addresses
 0

n

n + 1

High

Base Register

n + 1

Bounds Register

p

User C
Program Space

User B
Program Space

User Program
Space

q

q + 1

p

p + 1

12

Two Pairs of Base/Bounds Registers

Operating
System

Program Base

Program Bounds

User Program
and Data

Space

Data Base

Data Bounds
User B

Data Space

User A
Data Space

User C
Data Space

User A
Program Space

User C
Program Space

User B
Program Space

13

Tagged Architecture
Tag Memory Word

R 0001

RW 0137

R 0099

X

X

R 4091

RW 0002

X

X

X

X

Code: R = Read-only RW = Read/Write

 X = Execute-only

14

Segment Address Translation

Logical Program

MAIN

SEG_A

SUB

DATA_SEG

MAIN

SEG_A

SUB

DATA_SEG

a

c

g

h

Segment Translation Table
Address

0

a

b

c

d

e

f

g

h

i

FETCH<DATA_SEG,20>

Location 20 within Segment DATA_SEG

+

15

Paging

Logical Program

Page 0

Page 1

Page 2

Page 4

Page 3

Page 5

Page 6

Page 7

0

1

2

4

3

5

6

7

b

f

i

c

l

g

n

e

Page Translation Table
Page Address

Page 0

Page 4

Page 7

Page 1

Page 5

Page 2

Page 3

Page 6

MemoryAddress

0

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

+

Location
37, Page 4

FETCH<4,37>

16

Paged Segmentation

Memory

DATA_SEG Page 1

MAIN Page 0

SEG_A Page 1

MAIN Page 1

SEG_A Page 2

SUB Page 0

DATA_SEG Page 0

SEG_A Page 0

Address
0

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

Segment DATA_SEG Word 20

Logical Program

MAIN

SEG_A

SUB

DATA_SEG

Segment Translation Table

MAIN

SEG_A

SUB

DATA_SEG

Segment
Page
Table

0

1

c

f

Page Translation Tables

 For Segment MAIN
Page Address

0

1

2

n

e

g

 For Segment SEG_A
Page Address

0

1

l

b

0 i

 For Segment SUB
Page Address

Page Address

+

20 = Page 0

FETCH<DATA_SEG,20>

For Segment DATA_SEG

17

Principles of Secure OS Design

• Simplicity of design

• OSs are inherently complex, and any unnecessary complexity only

makes them harder to understand and secure

• Layered design

• Enables layered trust

• Layered trust

• Layering is both a way to keep a design logical and understandable

and a way to limit risk

• Example: very tight access controls on critical OS functions, fewer

access controls on important noncritical functions, and few if any

access controls on functions that aren’t important to the OS

18

Kernelized Design

• A kernel is the part of the OS that performs the lowest-

level functions

• Synchronization

• Interprocess communication

• Message passing

• Interrupt handling

• A security kernel is responsible for enforcing the security

mechanisms of the entire OS

• Typically contained within the kernel

19

Reference Monitor

Operating SystemorTrusted Softwar e Operating SystemorTrusted Softwar e

Reference
Monitor

S
S

S

O
O

O
O

20

Trusted Systems

• A trusted system is one that has been shown to warrant

some degree of trust that it will perform certain activities

faithfully

• Characteristics of a trusted system:

• A defined policy that details what security qualities it enforces

• Appropriate measures and mechanisms by which it can enforce

security adequately

• Independent scrutiny or evaluation to ensure that the mechanisms

have been selected and implemented properly

21

History of Trusted Systems

Trusted Computer

System Evaluation

Criteria

Security

Technology

Planning

Study

British,

German,

French

Criteria

Combined

Federal

Criteria

E.C. Information

Technology

Security

Evaluation

Criteria

Common

Criteria

Security Controls

for Computer

Systems

1970 1983 1991 1994

1972 1988 1992

22

Trusted Computing Base (TCB)

Non-TCB

Primitive I/O

Basic operations

Clocks, timing

Interrupt handling

Hardware: registers, memory

Capabilities

User request interpreter

User process coordination, synchronization

User environment: objects, names (e.g., files)

User I/O

Procedures, user processes

Creation and deletion of user objects

Directories

Extended types

Segmentation, paging, memory management

User applications

Utilities

TCB

23

Other Trusted System Characteristics

• Secure startup

• System startup is a tricky time for security, as most systems load

basic I/O functionality before being able to load security functions

• Trusted path

• An unforgeable connection by which the user can be confident of

communicating directly with the OS

• Object reuse control

• OS clears memory before reassigning it to ensure that leftover data

doesn’t become compromised

• Audit

• Trusted systems track security-relevant changes, such as

installation of new programs or OS modification

• Audit logs must be protected against tampering and deletion

24

Rootkits

• A rootkit is a malicious software package that

attains and takes advantage of root status or

effectively becomes part of the OS

• Rootkits often go to great length to avoid being

discovered or, if discovered and partially

removed, to reestablish themselves

• This can include intercepting or modifying basic OS

functions

25

Rootkit Evading Detection

Will call’s

result reveal

rootkit?

Pass call to

operating system

function

Intercepted

function call

No

Execute call but

monitor result and

adjust as necessary

Yes

26

Summary

• OSs have evolved from supporting single users and

single programs to many users and programs at once

• Resources that require OS protection: memory, I/O

devices, programs, and networks

• OSs use layered and modular designs for simplification

and to separate critical functions from noncritical ones

• Resource access control can be enforced in a number of

ways, including virtualization, segmentation, hardware

memory protection, and reference monitors

• Rootkits are malicious software packages that attain root

status or effectively become part of the OS

27

