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Chapter 5 Objectives

• Basic security functions provided by operating systems

• System resources that require operating system 

protection

• Operating system design principles

• How operating systems control access to resources

• The history of trusted computing

• Characteristics of operating system rootkits
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History of Operating Systems

• Single-user systems, no OS

• Multiprogrammed OS, aka monitors

• Multiple users

• Multiple programs

• Scheduling, sharing, concurrent use

• Personal computers
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Protected Objects

• Memory

• Sharable I/O devices, such as disks

• Serially reusable I/O devices, such as printers

• Sharable programs and subprocedures

• Networks

• Sharable data
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Modular OS Design
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Virtualization

• With virtualization, the OS presents each user with just 

the resources that user should see

• The user has access to a virtual machine (VM), which 

contains those resources

• The user cannot access resources that are available to 

the OS but exist outside the VM

• A hypervisor, or VM monitor, is the software that 

implements a VM

• Translates access requests between the VM and the OS

• Can support multiple OSs in VMs simultaneously

• Honeypot: A VM meant to lure an attacker into an 

environment that can be both controlled and monitored
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Separation and Sharing

• Methods of separation:

• Physical

• Temporal

• Logical

• Cryptographic

• Methods of supporting separation/sharing:

• Do not protect

• Isolate

• Share all or share nothing

• Share but limit access

• Limit use of an object
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Hardware Protection of Memory
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Base/Bounds Registers
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Two Pairs of Base/Bounds Registers
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Tagged Architecture
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Paging
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Paged Segmentation
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Principles of Secure OS Design

• Simplicity of design

• OSs are inherently complex, and any unnecessary complexity only 

makes them harder to understand and secure

• Layered design

• Enables layered trust

• Layered trust

• Layering is both a way to keep a design logical and understandable 

and a way to limit risk

• Example: very tight access controls on critical OS functions, fewer 

access controls on important noncritical functions, and few if any 

access controls on functions that aren’t important to the OS

18



Kernelized Design

• A kernel is the part of the OS that performs the lowest-

level functions

• Synchronization

• Interprocess communication

• Message passing

• Interrupt handling

• A security kernel is responsible for enforcing the security 

mechanisms of the entire OS

• Typically contained within the kernel
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Trusted Systems

• A trusted system is one that has been shown to warrant 

some degree of trust that it will perform certain activities 

faithfully

• Characteristics of a trusted system:

• A defined policy that details what security qualities it enforces

• Appropriate measures and mechanisms by which it can enforce 

security adequately

• Independent scrutiny or evaluation to ensure that the mechanisms 

have been selected and implemented properly
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History of Trusted Systems
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Trusted Computing Base (TCB)

Non-TCB

Primitive I/O

Basic operations

Clocks, timing

Interrupt handling

Hardware: registers, memory

Capabilities

User request interpreter

User process coordination, synchronization

User environment: objects, names (e.g., files)

User I/O

Procedures, user processes

Creation and deletion of user objects

Directories

Extended types

Segmentation, paging, memory management

User applications

Utilities

TCB

23



Other Trusted System Characteristics

• Secure startup

• System startup is a tricky time for security, as most systems load 

basic I/O functionality before being able to load security functions

• Trusted path

• An unforgeable connection by which the user can be confident of 

communicating directly with the OS

• Object reuse control

• OS clears memory before reassigning it to ensure that leftover data 

doesn’t become compromised

• Audit

• Trusted systems track security-relevant changes, such as 

installation of new programs or OS modification

• Audit logs must be protected against tampering and deletion
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Rootkits

• A rootkit is a malicious software package that 

attains and takes advantage of root status or 

effectively becomes part of the OS

• Rootkits often go to great length to avoid being 

discovered or, if discovered and partially 

removed, to reestablish themselves

• This can include intercepting or modifying basic OS 

functions
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Rootkit Evading Detection
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Summary

• OSs have evolved from supporting single users and 

single programs to many users and programs at once

• Resources that require OS protection: memory, I/O 

devices, programs, and networks

• OSs use layered and modular designs for simplification 

and to separate critical functions from noncritical ones

• Resource access control can be enforced in a number of 

ways, including virtualization, segmentation, hardware 

memory protection, and reference monitors

• Rootkits are malicious software packages that attain root 

status or effectively become part of the OS
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