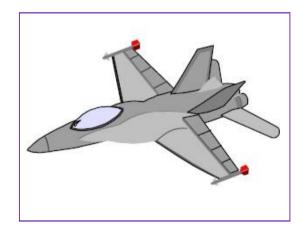


DIFFERENCE BETWEEN ADDITIVE AND SUBTRACTIVE MANUFACTURING

SI. No	Additive Manufacturing/3D Printing/Rapid prototyping	Subtractive Manufacturing
4	Volumetric density of the constrictive material of final component can be controlled during operations.	Material density cannot be controlled during operation.
5	No material wastage takes place in these processes.	These processes are associated with material wastage in the form of chips, scrabs, etc.
6	Complex shape can be easily fabricated.	Subtractive manufacturing processes having limited capability in fabrication of complex shape
7	Structures containing fully closed internal hollow parts can be produced.	Structures containing enclosed hollow parts cannot be produced by these processes, unless joining is allowed.

V SEM- ADDITIVE MANUFACTURING-I UNIT- 1-INTRODUCTION-K.M.EAZHIL

RAPID PROTOTYPING (RP)


- Global competition, customization, and continued demands for cost savings are forcing companies to look for new technologies to improve their business processes and speed up the product development cycle.
- Rapid Prototyping (RP) has emerged as a key enabling technology with its ability to shorten product design and development time.
- **RP technologies** can be virtual and physical.

DEFINITION OF A PROTOTYPE

- A prototype is the first or original example of something that has been or will be copied or developed; it is a model or preliminary version.
 - e.g.: A prototype supersonic aircraft.

V SEM- ADDITIVE MANUFACTURING-I UNIT- 1-INTRODUCTION-K.M.EAZHIL

TYPES OF PROTOTYPES

- Implementation of the prototype: It is usually implemented full-scale as well as being fully functional.
- Form of the prototype: Purely based upon the assumed principles or science. Ex: cellular telephone that looks and feels very much like the real product but without its intended functions.
- Approximation of the prototype: Model can be a very rough representation of the intended product.

PROTOTYPING - DEFINITION

- Rapid Prototyping (RP), as defined in this text, refers to the layer by- layer fabrication of three-dimensional physical models directly from a computeraided design (CAD).
- It provide designers and engineers the capability to print out their ideas in three dimensions.
- Rapid Prototyping has also been referred to as layer manufacturing, solid freeform fabrication, additive manufacturing and Three-dimensional (3D) Printing.

THREE-DIMENSIONAL (3D) PRINTING

- This technologies are able to produce physical model in a layer manner directly from their CAD models without any tools, dies and fixtures and also with little human intervention.
- It is capable to fabricate parts quickly with complex shape easily as compared to traditional manufacturing technology.
- This course focuses on introduction about 3D printing, materials, Classification processes, and their applications.