CNS COLLEGE OF ENGINEERING
(Autonomous)
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
19EC306 Digital Electronics

$$
\begin{aligned}
-2 x-3 & =4 x-15 \\
+3 & =43 \\
-2 x & =4 x-12 \\
-4 x & =-4 x \\
-6 x & =-12 \\
\div-6 & \div-6 \\
x & =2
\end{aligned}
$$

Guess today's topic???

Boolean algebra

Boolean Algebra
When we learned numbers like $1,2,3$, we also then learned how to add, multiply, etc. with them. Boolean Algebra covers operations that we can do with 0's and 1's. Computers do these operations ALL THE TIME and they are basic building blocks of computation inside your computer program.
Axioms, laws, theorems
We need to know some rules about how those 0 's and 1 's can be operated on together. There are similar axioms to decimal number algebra, and there are some laws and theorems that are good for us to use to simplify our operation.

Boolean Algebra

A Boolean algebra comprises...
A set of elements B
Binary operators $\{+, \bullet\}$ Boolean sum and product
A unary operation $\{'\}$ (or $\}$) example: A' or A
... and the following axioms

1. The set B contains at least two elements $\{a b\}$ with $a \neq b$
2. Closure: $a+b$ is in $B \quad a \cdot b$ is in B
3. Commutative: $a+b=b+a \mathrm{a} \bullet b=b \cdot a$
4. Associative: $\quad a+(b+c)=(a+b)+c \quad a \bullet(b \cdot c)=(a \bullet b) \cdot c$
5. Identity: $\quad a+0=a \quad a \bullet 1=a$
6. Distributive: $\quad a+(b \cdot c)=(a+b) \cdot(a+c) a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
7. Complementarity: $a+a^{\prime}=1 \quad a \cdot a^{\prime}=0$

Digital (binary) logic is a Boolean algebra

Substitute

$\{0,1\}$ for B
AND for - Boolean Product.
OR for $+\quad$ Boolean Sum.
NOT for ' Complement.
All the axioms hold for binary logic

Definitions

Boolean function

- Maps inputs from the set $\{0,1\}$ to the set $\{0,1\}$

Boolean expression

- An algebraic statement of Boolean variables and operators
\square AND $X \cdot Y$
XY

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

- OR X+Y

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

- NOT $\bar{X} \quad X^{\prime} \quad x--\quad-\quad-$

X	Y
0	1
1	0

Logic functions and Boolean algebra

- Any logic function that is expressible as a truth table can be written in Boolean algebra using,$+ \bullet$, and '

X	Y	Z	$Z=X \bullet Y$	X	Y	X^{\prime}	Z	$Z=X^{\prime} \bullet Y$
0	0	0	0	0	1	0		
0	1	0	0	1	1	1		
1	0	0	1	0	0	0		
1	1	1	1	1	0	0		

X	Y	X^{\prime}	Y^{\prime}	$X \cdot Y$	$X^{\prime} \cdot Y^{\prime}$	Z
0	0	1	1	0	1	1
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	1	0	0	1	0	1

Two key concepts

- Duality

All Boolean expressions have logical duals
Any theorem that can be proved is also proved for its dual Replace: • with +, + with •, 0 with 1 , and 1 with 0 Leave the variables unchanged

- De Morgan's Theorem

Procedure for complementing Boolean functions
Replace: • with + , + with $\bullet, 0$ with 1 , and 1 with 0
Replace all variables with their complements

Useful laws and theorems

Identity:
$X+0=X$
Dual: $X \cdot 1=X$
Null:
$x+1=1$
Dual: $X \bullet 0=0$
Idempotent: $\quad X+X=X \quad$ Dual: $X \bullet X=X$
Involution: $\quad\left(X^{\prime}\right)^{\prime}=X$
Complementarity: $X+X^{\prime}=1$
Commutative: $\quad X+Y=Y+X \quad$ Dual: $X \bullet Y=Y \bullet X$
Associative: $\quad(X+Y)+Z=X+(Y+Z) \quad$ Dual: $(X \bullet Y) \cdot Z=X \bullet(Y \bullet Z)$
Distributive: $\quad X \bullet(Y+Z)=(X \bullet Y)+(X \bullet Z)$ Dual: $X+(Y \bullet Z)=(X+Y) \cdot(X+Z)$
Uniting: $\quad X \bullet Y+X \bullet Y^{\prime}=X \quad$ Dual: $(X+Y) \bullet\left(X+Y^{\prime}\right)=X$

Assessment

- Example 1: Prove the uniting theorem-- $X \cdot Y+X \cdot Y^{\prime}=X$

Distributive
Complementarity Identity
$X \bullet Y+X \bullet Y^{\prime}=X \bullet\left(Y+Y^{\prime}\right)$
$=X \cdot(1)$
$=X$

- Example 2: Prove the absorption theorem-- $X+X \cdot Y=X$

Identity
Distributive
Null
Identity

$$
\begin{aligned}
X+X \cdot Y & =(X \cdot 1)+(X \cdot Y) \\
& =X \bullet(1+Y) \\
& =X \bullet(1) \\
& =X
\end{aligned}
$$

Assessment

- Example: $F=(A+B) \bullet\left(A^{\prime}+C\right)$, so $F^{\prime}=\left(A^{\prime} \cdot B^{\prime}\right)+\left(A \cdot C^{\prime}\right)$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}^{\prime}
0	0	0	0	0	0	0	1
0	0	1	0	0	0	1	1
0	1	0	1	0	1	0	0
0	1	1	1	0	1	1	0
1	0	0	0	1	0	0	1
1	0	1	1	1	0	1	0
1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	0

Sis

