
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

COURSE NAME : 19CS302 AGILE SOFTWARE ENGINEERING

II YEAR /III SEMESTER

Unit 1- Introduction to Software Engineering

Topic 8: Design concepts and model

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Brain Storming

1. How to design a product?

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Design

Mitch Kapor, the creator of Lotus 1-2-3, presented a “software design manifesto”in

Dr. Dobbs Journal. He said:

Good software design should exhibit:

Firmness: A program should not have any bugs that inhibit its function.

Commodity: A program should be suitable for the purposes for which it was

intended.

Delight: The experience of using the program should be pleasurable one.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Analysis Model -> Design Model

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Design and Quality Goals

• The design must implement all of the explicit requirements contained in

the analysis model, and it must accommodate all of the implicit

requirements desired by the customer.

• The design must be a readable, understandable guide for those who

generate code and for those who test and subsequently support the

software.

• The design should provide a complete picture of the software, addressing

the data, functional, and behavioral domains from an implementation

perspective.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

How to achieve the Quality?

• A design should exhibit an architecture that (1) has been created using recognizable
architectural styles or patterns, (2) is composed of components that exhibit good design
characteristics and (3) can be implemented in an evolutionary fashion

• For smaller systems, design can sometimes be developed linearly.

• A design should be modular; that is, the software should be logically partitioned into elements or
subsystems

• A design should contain distinct representations of data, architecture, interfaces, and components.

• A design should lead to data structures that are appropriate for the classes to be implemented
and are drawn from recognizable data patterns.

• A design should lead to components that exhibit independent functional characteristics.

• A design should lead to interfaces that reduce the complexity of connections between
components and with the external environment.

• A design should be derived using a repeatable method that is driven by information
obtained during software requirements analysis.

• A design should be represented using a notation that effectively communicates its meaning.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Fundamental Concepts in Design

•Abstraction—data, procedure, control

•Architecture—the overall structure of the software

•Patterns—”conveys the essence” of a proven design solution

• Separation of concerns—any complex problem can be more easily handled if it is
subdivided into pieces

•Modularity—manifestation of separation of concerns

•Information Hiding—controlled interfaces, no details of algorithms/data

•Functional independence—single-minded function and low coupling

•Refinement—elaboration of detail for all abstractions

• Aspects—a mechanism for understanding how global requirements affect design
• Refactoring—a reorganization technique that simplifies the design

• OO design concepts—Appendix II

• Design Classes—provide design detail that will enable analysis classes to be
implemented

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Abstraction

•A solution is stated in large terms using the language of the problem

environment at the highest level abstraction.

•The lower level of abstraction provides a more detail description of the

solution.

•A sequence of instruction that contain a specific and limited function

refers in a procedural abstraction.

•A collection of data that describes a data object is a data abstraction.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Data Abstraction

door

manufacturer model

number type

swing direction inserts

lights

type number

weight

opening mechanism

implemented as a data structure

Describes the door object

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Procedural Abstraction

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Software Architecture

“The overall structure of the software and the ways in which that structure provides
conceptual integrity for a system.” [SHA95a]

Structural properties. This aspect of the architectural design representation defines the
components of a system (e.g., modules, objects, filters) and the manner in which those
components are packaged and interact with one another. For example, objects are packaged
to encapsulate both data and the processing that manipulates the data and interact via the
invocation of methods
Extra-functional properties. The architectural design description should address how the
design architecture achieves requirements for performance, capacity, reliability, security,
adaptability, and other system characteristics.
Families of related systems. The architectural design should draw upon

repeatable patterns that are commonly encountered in the design of families of similar
systems. In essence, the design should have the ability

to reuse architectural building blocks.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Patterns

Design Pattern Template

Pattern name—describes the essence of the pattern in a short but expressive name

Intent—describes the pattern and what it does

Also-known-as—lists any synonyms for the pattern

Motivation—provides an example of the problem

Applicability—notes specific design situations in which the pattern is applicable

Structure—describes the classes that are required to implement the pattern
Participants—describes the responsibilities of the classes that are required to
implement the pattern

Collaborations—describes how the participants collaborate to carry out their
responsibilities

Consequences—describes the “design forces” that affect the pattern and the potential
trade-offs that must be considered when the pattern is implemented

Related patterns—cross-references related design patterns

A design pattern describes a design structure and that structure solves a particular design
problem in a specified content.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Separation of Concerns

• Any complex problem can be more easily handled if it is subdivided into

pieces that can each be solved and/or optimized independently

• A concern is a feature or behavior that is specified as part of the

requirements model for the software

• By separating concerns into smaller, and therefore more manageable

pieces, a problem takes less effort and time to solve.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Modularity

• "Modularity is the single attribute of software that allows a program to be
intellectually manageable" [Mye78].

• Monolithic software (i.e., a large program composed of a single module)
cannot be easily grasped by a software engineer.

• The number of control paths, span of reference, number of variables, and
overall complexity would make understanding close to impossible.

• In almost all instances, you should break the design into many modules,
hoping to make understanding easier and as a consequence, reduce the cost
required to build the software.

• BUT: Pay attention to integration costs too.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Modularity: Trade-offs

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Information Hiding

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Why Information Hiding?

reduces the likelihood of “side effects”

limits the global impact of local design decisions

emphasizes communication through controlled interfaces

discourages the use of global data

leads to encapsulation—an attribute of high quality design

results in higher quality software

Modules must be specified and designed so that the information like algorithm and
data presented in a module is not accessible for other modules not requiring that
information.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Functional Independence

The functional independence is the concept of separation and related to
the concept of modularity, abstraction and information hiding.

Cohesion is an indication of the relative functional strength of a module.

A cohesive module performs a single task, requiring little
interaction with other components in other parts of a program. Stated
simply, a cohesive module should (ideally) do just one thing.

Coupling is an indication of the relative interdependence among
modules.

Coupling depends on the interface complexity between
modules, the point at which entry or reference is made to a module,
and what data pass across the interface.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Stepwise Refinement

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Refactoring

Fowler [FOW99] defines refactoring in the following manner:

"Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the code
[design] yet improves its internal structure.”

When software is refactored, the existing design is examined for
redundancy
unused design elements
inefficient or unnecessary algorithms
poorly constructed or inappropriate data structures

or any other design failure that can be corrected to yield a better
design.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

OO Design Concepts

Design classes

Entity classes

Boundary classes

Controller classes

Inheritance—all responsibilities of a superclass is immediately inherited
by all subclasses

Messages—stimulate some behavior to occur in the receiving object

Polymorphism—a characteristic that greatly reduces the effort required
to extend the design

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Design Classes

Analysis classes are refined during design to become entity classes

Boundary classes are developed during design to create the interface
(e.g., interactive screen or printed reports) that the user sees and interacts
with as the software is used.

Boundary classes are designed with the responsibility of managing
the way entity objects are represented to users.

Controller classes are designed to manage

the creation or update of entity objects;

the instantiation of boundary objects as they obtain
information from entity objects;

complex communication between sets of objects;

validation of data communicated between objects or between
the user and the application.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

The DesignModel

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Design Model Elements

Data elements
Data model --> data structures

Data model --> database architecture

Architectural elements

Like floor plan of a house

Analysis classes, their relationships, collaborations and behaviors are
transformed into design realizations

Patterns and “styles” (Chapters 9 and 12)

Interface elements
the user interface (UI)

external interfaces to other systems, devices, networks or other
producers or consumers of information

internal interfaces between various design components.

Component elements

Deployment elements

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Architectural Elements

from three sources:

information about the application domain for the software to be built;

specific requirements model elements such as data flow diagrams or
analysis classes, their relationships and collaborations for the problem at hand,
and

the availability of architectural patterns and styles

The architectural model [Sha96] is derived

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Interface Elements

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Component Elements

Specifies the details of components
Similar to the plumbing, electrical, details of every room

in a floor plan

SensorManagement performs all functions regarding sensors

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

Assessment 1

1. What is Design concepts?

Ans : ___

2. What is Design model?

Ans : ___

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

References

Thank You

1.Roger S.Pressman, Software engineering- A practitioner‘s Approach, 10th

Edition, McGraw-Hill, 2017.

2.Ken Schawber, Mike “Agile Software Development with Scrum” Pearson

Education, 2nd Edition, 2015.

DESIGN CONCEPTS AND MODEL/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

