

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

COURSE NAME : 19CS302 AGILE SOFTWARE ENGINEERING

II YEAR /III SEMESTER

Unit 1- Introduction to Software Engineering Topic 1: The Nature of Software -Software Engineering

Brain Storming

- 1. What is Software?
- 2. How to develop software?

The Nature of Software

Software is intangible – Hard to understand development effort Software is easy to reproduce – Cost is in its *development* • in other engineering products, manufacturing is the costly stage The industry is labor-intensive – Hard to automate

The Nature of Software

Untrained people can hack something together – Quality problems are hard to notice Software is easy to modify – People make changes without fully understanding it Software does not 'wear out'

- It *deteriorates* by having its design changed:
 - erroneously, or
 - in ways that were not anticipated, thus making it complex

Types of Software...

Custom

– For a specific customer

Generic

- Sold on open market
- Often called
 - COTS (Commercial Off The Shelf)
 - Shrink-wrapped

Embedded

- Built into hardware
- Hard to change

Types of Software

Real time software

E.g. control and monitoring systems
Must react immediately
Safety often a concern

Data processing software

Used to run businesses
Accuracy and security of data are key

Some software has both aspects

What is Software Engineering?...

The process of solving customers' problems by the systematic development and evolution of large, high-quality software systems within cost, time and other constraints

Other definitions:

- IEEE: (1) the application of a systematic, disciplined, quantifiable approach to the development, operation, maintenance of software; that is, the application of engineering to software. (2) The study of approaches as in (1).
- The Canadian Standards Association: The systematic activities involved in the design, implementation and testing of software to optimize its production and support.

Solving customers' problems

- This is the *goal* of software engineering
- Sometimes the solution is to *buy, not build*
- Adding unnecessary features does not help solve the problem
- Software engineers must *communicate effectively* to identify and understand the problem

What is Software Engineering?...

Systematic development and evolution

- An engineering process involves applying well understood techniques in a organized and disciplined way
- Many well-accepted practices have been formally standardized
 - e.g. by the IEEE or ISO
- Most development work is *evolution*

What is Software Engineering?...

Large, high quality software systems

- Software engineering techniques are needed because large systems *cannot be completely understood* by one person
- Teamwork and co-ordination are required
- Key challenge: Dividing up the work and ensuring that the parts of the system work properly together
- The end-product must be of sufficient quality

What is Software Engineering?

Cost, time and other constraints

- Finite resources
- The benefit must outweigh the cost
- Others are competing to do the job cheaper and faster
- Inaccurate estimates of cost and time have caused many project failures

Software Engineering and the Engineering Profession

The term Software Engineering was coined in 1968

– People began to realize that the principles of engineering should be applied to software development

Engineering is a licensed profession

- In order to protect the public
- Engineers design artifacts following well accepted practices which involve the application of science, mathematics and economics
- Ethical practice is also a key tenet of the profession

In many countries, much software engineering does not require an engineering licence, but is still engineering

Software Engineering and the Engineering Profession

Ethics in Software Engineering:

Software engineers shall

- Act consistently with public interest
- Act in the best interests of their clients
- Develop and maintain with the highest standards possible
- Maintain integrity and independence
- Promote an ethical approach in management
- Advance the integrity and reputation of the profession
- Be fair and supportive to colleagues
- Participate in lifelong learning

1. Users

- Those who use the software
- 2. Customers
 - Those who pay for the software
- 3. Software developers
- 4. Development Managers

All four roles can be fulfilled by the same person

Software Quality...

Usability

– Users can learn it and fast and get their job done easily Efficiency

– It doesn't waste resources such as CPU time and memory Reliability

– It does what it is required to do without failing Maintainability

– It can be easily changed

Reusability

– Its parts can be used in other projects, so reprogramming is not needed

Software Quality and the Stakeholders

THE NATURE OF SOFTWARE -SOFTWARE ENGINEERING/ 19CS302 AGILE SOFTWARE ENGINEERING/KANCHANA.M/CST/SNSCE

helps get work done

Development manager:

to develop and maintain

Short Term Vs. Long Term Quality

Short term:

- Does the software *meet the customer's immediate needs*?
- Is it sufficiently efficient for the volume of data we have *today*? Long term:
 - Maintainability
 - Customer's future needs
 - Scalability: Can the software handle larger volumes of data?

Software Engineering Projects

Most projects are *evolutionary* or *maintenance* projects, involving work on *legacy* systems

- <u>Corrective</u> projects: fixing defects
- <u>Adaptive</u> projects: changing the system in response to changes in
 - Operating system
 - Database
 - Rules and regulations
- <u>Enhancement</u> projects: adding new features for users
- <u>Reengineering</u> or <u>perfective</u> projects: changing the system internally so it is more maintainable

Requirements and specification

- Includes
 - Domain analysis
 - Defining the problem
 - Requirements gathering
 - –Obtaining input from as many sources as possible
 - Requirements analysis
 - -Organizing the information
 - Requirements specification
 - –Writing detailed instructions about how the software should behave

Design

- Deciding how the requirements should be implemented, using the available technology
- Includes:
 - Systems engineering: Deciding what should be in hardware and what in software
 - Software architecture: Dividing the system into subsystems and deciding how the subsystems will interact
 - Detailed design of the internals of a subsystem
 - User interface design
 - Design of databases

Activities Common to Software Projects

Modeling

- Creating representations of the domain or the software
 - Use case modeling
 - Structural modeling
 - Dynamic and behavioural modeling
- Programming
- Quality assurance
 - Reviews and inspections
 - Testing
- Deployment
- Managing the process

Difficulties and Risks in Software Engineering

- Complexity and large numbers of details
- Uncertainty about technology
- Uncertainty about requirements
- Uncertainty about software engineering skills
- Constant change
- Deterioration of software design
- Political risks

Assessment 1

1. What is Software Engineering?

Ans : _____

2. What are the salient features of Software Engineering?

Ans:

References

1.Roger S.Pressman, Software engineering- A practitioner's Approach, 10th Edition, McGraw-Hill, 2017. 2.Ken Schawber, Mike "Agile Software Development with Scrum" Pearson Education, 2nd Edition, 2015.

Thank You

