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Linearbasis function models

Linear models for
regression

The focus so far on unsupervised learning, we turn now to supervised learning

◮ Regression

The goal of regression is to predict the value of one or morecontinuous target
variablest, given the value of aD-dimensionalvectorxofinput variables

e.g., polynomial curvefitting◮
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Linearbasis function models

Linear models for
regression (cont.)

Training data ofN= 10 points, blue circles

each comprising an observation of the◮

input variablexalong with the
correspondingtarget variablet1

t 

Theunknown functionsin(2πx) is used to

generate the data, green curve

0

Goal: Predict the value oftfor
some new value ofx

◮
−1

without knowledge of the green curve◮0 1x 

Theinput training dataxwas generated by choosing values ofx
n= 1,ꢀ .ꢀ .ꢀ .ꢀ ,N, that are spaced uniformly in the range [0,1]

n, for

Thetarget training datatwas obtained by computing values sin(2πx n)

of the function and adding a small level of Gaussian noise
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Linearbasis function models

Linear models for
regression (cont.)

We shallfit the data using a polynomial function of the form◮

XM

y(x,w) =w +w 1x+w x2 +·ꢀ ·ꢀ ·+
w xM =

w xj

j
(1)0 2 M

j=0

Mis the polynomial order,x j isxraised to the power ofj

Polynomial coefficientsw 0,ꢀ .ꢀ .ꢀ .ꢀ ,wM are collected in vectorw

◮

◮

The coefficients values are obtained byfitting the polynomial to training data

By minimising anerror function, a measure of misfit between function◮

y(x,w), for any given value ofw, and the training set data points

A choice of error function is the sum of the squares of the errors between◮

predictionsy(x ,w) for each pointx and corresponding target valuestn n n

1XN

(w) = y(xn,w)− t

FC - Fortaleza

2 =⇒ w ⋆ (2)E n
2

n=1
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Linearbasis function models

Linear models for
regression (cont.)

The goal in the curvefitting problem is to be able to make predictions for
the target variablet, given some new value of the input variablexand

a set of training data comprisingNinput valuesx=(x
and their corresponding target valuest= (t 1,ꢀ .ꢀ .ꢀ .ꢀ ,t N)T

1,ꢀ .ꢀ .ꢀ .ꢀ ,xN)T◮

Uncertainty over the target valueis expressed using a probability distribution

Given the value ofx, the corresponding value oftis assumed to have a◮

Gaussian distribution with a mean the valuey(x,w) of the polynomial

p(t|x,w,β) = N t y(x,w),β −1 (3)

and some precisionβ(the precision is the reciprocal of the varianceσ 2)
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Linearbasis function models

Linear models for
regression (cont.)

The conditional distribution overtgivenxisp(t|x,w,β) =N t y(x,w),β −1

The mean is given by the polynomial functiony(x,w)

The precision is given byβ, withβ −1 =σꢀ 2
◮

◮

t y(x,w)

We can use training data{x,t}ꢀ  
to determine the values of the
parametersµandβof thisy(x0,w) 2

σ Gaussian distributionp(t|x ,w,β)0 

◮ Likelihood maximisation

x0 x 
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Linearbasis function models

Linear models for
regression (cont.)

Assuming that the data have been drawn independently from the conditional

distributionp(t|x,w,β) =N t y(x,w),β −1 , the likelihood function is

YN

p(t|x,w,β) = N tn y(xn,w),β −1 (4)

(5)

n=1

It is again convenient to maximise its logarithm, the log likelihood function

βꢀ XN

2

N N
2

lnp(t|x,w,β) =− y(xn,w)− t
2 + lnβ− ln(2π)n

2
n=1

Maximisation of log likelihood wrtwis minimisationof negative log likelihood

This equals the minimisation of the sum-of-squares error function◮

1XN

(w) = y(xn,w)− t 2 =⇒ w =
ML

⋆E wn
2

n=1
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Linearbasis function models

Linear models for
regression (cont.)

βꢀ XN N N
2

lnp(t|x,w,β) =− y(xn,w)− t + lnβ− ln(2π)2 2 2
n=1 n

Determinationof the maximum likelihood solution forβ 

Maximising the log likelihood with respect toβgives◮

1

βML

1 XN

= y(xn,w ML)− t n)
2

(6)
N

n=1

where again we decoupled the solution ofwandβ ◮
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Linearbasis function models

Linear models for
regression(cont.)

• Having an estimate ofwandβwe can make predictions for new values ofx
We havea probabilisticmodel that gives the probability distribution overt• ◮

• We can make estimations that are much more than a plain point
estimate oft
• ◮ We can make predictions in terms of the

,β ) =N ꢀ ꢀ t (x,w ),βꢀ −1

predictive distribution
(7)

p(t|x,w ML ML y ML ML
•

The probability distribution overt, rather than a point estimate◮
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Linearbasis function models

Linear models for
regression (cont.)

Polynomialfitting is only a specific example of a broad class of functions

◮ Linear regression models

They share the property of beinglinear functions of tunable parameters

In the simplest form, also linear functions of the input variables◮
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Linearbasis function models

Linear models for
regression (cont.)

A much moreuseful class of functions arises by taking linear combinations
of afixed set of some nonlinear functions of the input variables

Such functions are commonly know asbasis functions◮

Such models are linear functions of the parameters (read, simple analytical
properties), and yet can benonlinear with respect to the input variables
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Linearbasis function models

Linear models for
regression (cont.)

Given a training data set comprisingNinputobservations{x
and corresponding responses target values{t n}N

}N

n=1
n

n=1

the goal is to predict the value oftfor a new, unseen, value ofx◮

Directly construct an appropriate functiony(x)

Simplest approach: The value for new inputsxconstitute the
predictions for the corresponding values oft

◮

From a probabilistic perspective, we aim to model
the predictive distributionp(t|x)

This expresses our uncertainty about the◮

More generally: value oftfor each value ofx

This allows to make predictions oft, for any
new value ofx, that minimise the expected
value of a suitable loss function (squared loss)

◮
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Linear basis function models

The simplest linear model for regression is one that
involves a linear combination of the input variables

y(x,w) =w +w x +·ꢀ ·ꢀ ·+w DxD,withx= (x 1,ꢀ .ꢀ .ꢀ .ꢀ ,xD)T (8)0 1 1

This is often simply known aslinear regression

Key property: This model is a linear function of the parametersw ,ꢀ .ꢀ .ꢀ .ꢀ ,w0 D

Key limitation: It is also a linear function of the input variablesx ,ꢀ .ꢀ .ꢀ .ꢀ ,x1 D

We immediately extend the class of models by considering linear
combinations offixed nonlinear functions of the input variables

MX− 1

y(x,w) =w + w φ(x)
j j

(9)0

j=1

Functionsφꢀ j(x) of the inputxare known asbasis functions
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Linear basis function models (cont.)

MX− 1

y(x,w) =w + w φ(x)
j j

0

j=1

The total number of parameters in the linear basis function model isM

The parameterw 0 allow for anyfixed offset in the data, it is calledbias

It is often convenient to define adummy basis functionφꢀ 0(x) = 1◮

MX− 1

j=0

y(x,w) = w φ(x) =w T φ(x) (10)j j

w= (w 0,ꢀ .ꢀ .ꢀ .ꢀ ,wM− 1 )T

= (φꢀ 0,ꢀ .ꢀ .ꢀ .ꢀ ,φꢀ  
)T

◮

◮ φ M − 1
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Linear basis function models (cont.)

MX− 1

y(x,w) = w φ(x) =w T φ(x)j j

j=0

By using nonlinear basis functions, we allow the function
y(x,w) to be a nonlinear functionof the input vector

It is still a linear model, inw◮

The linearity simplifies the analysis of this class of models

The example of polynomial regression is a particular example of this model on a
single input variablex, the basisfunctions are powers ofx, so thatφ (x) =x j

j

XM

y(x,w) =w +w 1x+w x2 +·ꢀ ·ꢀ ·+
w xM =

w xj

j
0 2 M

j=0
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Linear basis function models (cont.)

There are many possible choices for the basis functions, the classic

(x−µꢀ j )2φj(x) = exp − (11)
2s2

theµꢀ j govern the location of the basis functions in input space

the parametersgoverns their spatial scale

◮

◮

This kind of functions are referred to as ‘Gaussian’basis functions

Though they are not required to have a probabilistic meaning◮

Normalisation coefficients are unimportant, we multiply byw◮ j
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Linear basis function models (cont.)

Another used possibility is thesigmoidal basis functionof the form

x−µꢀ  φj(x) =σ 
j

(12)

(13)

s

where the functionσ(a) is the logistic sigmoid function, defined by

1
σ(a) =

1 + exp(−a)

Or, We could also use the hyperbolic tangent function tanh(a)

It relates to the logistic sigmoid tanh(a) = 2σ(2a)−1◮
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Linear basis function models (cont.)

Polynomials on the left, Gaussians in the centre, and sigmoids on the right
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The analysis here is independent of the particular choice of basis function set

We shall not specify the particular form of the basis functions◮

Applicable when the vectorφ(x) of basis functions is the identityφ(x) =x
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Maximum likelihood and least squares

We alreadyfitted polynomial functions to data

by minimising sum-of-squares error function◮

We also showed that this error function could be motivated probabilistically

Maximum likelihood solution under an assumed Gaussian noise model◮

We return to this problem and consider the least squares approach in detail

Especially, its relation to maximum likelihood◮
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Maximum likelihood and least squares (cont.)

We assume that the target variabletis given by

a deterministic functiony(x,w)◮

◮
t=y(x,w) +ε(14)with additive Gaussian noise

Hereεis a zero-mean Gaussian random variable

with inverse variance (precision) equalβ ◮

◮ −1)
ε∼N(0,β 

p(t|x,w,β) =N(t|y(x,w),β − 1 ) (15)

Given the value ofx, the corresponding value ofthas a Gaussian distribution
with a mean equal to the valuey(x,w) of the deterministic function
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Maximum likelihood and least squares (cont.)

If we assume a squared loss function1, then the optimal prediction, for a
new valuex, will be given by the conditionalmean of the target variable

We have a Gaussian conditional distributionp(t|x,w,β) =N(t|y(x,w),β 

The conditional average oftconditoned onxis

−1)

◮

◮

Z
E[t|x] = tp(t|x)dt=y(x,w) (16)

which is what we called theregression function

� � �2�
1With a squared loss functionL(t,y

E[L] =

x) = y(x)−t , the expected loss is
���

y(x)−t
�2p(x,t)dxdtand we choosey(x) that minimisesE(L)
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Maximum likelihood and least squares (cont.)

Consider a set of inputsX={x 1,ꢀ .ꢀ .ꢀ .ꢀ ,xN}with target valuest={t 1,ꢀ .ꢀ .ꢀ .ꢀ ,t N} 

We group the target variables{t n}into a column vector that we denote byt

Making the assumption that these points are drawn independently from the

distributionp(t|x,w,β) =N(t|y(x,w),β 

p(t|X,w,β) =

−1), we get the likelihood function

YN

N ( t |wTφ(x ),β) (17)n n

n=1

It is a function of the adjustable parameterswandβ ◮

◮
P

We usedy(xn ,w) = M−1 w φꢀ (x ) =w T φ(x )
j j n n

j=0
In supervised learning, we are not trying to model the distribution ofx

xis always in the set of conditioning variables◮

◮ We can drop it from expression likep(t|x,w,β)
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Maximum likelihood and least squares (cont.)

Taking the logarithm of the likelihood function and using
the standard form for the univariate Gaussian, we have

XN

lnp(t|w,β) = ln N ( t |wTφ(x ),βꢀ −1)
n nn=1

N
2

N
2

= lnβ− ln2π−βE D(w) (18)

(19)

Where, as always, the sum-of-squares has been defined as

1XN
2ED(w) = t − w T φ(x )

n n2
n=1
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Maximum likelihood and least squares (cont.)

Having the likelihood function, we use maximum likelihood to getwandβꢀ  
Considerfirst the maximisation with respect tow

The maximisation of the likelihood under a conditional Gaussian is◮

equivalent to the minimisation of the sum-of-squares error functionE D(w)

The gradient of the log likelihood function takes the form◮

XN

∇ lnp(t|w,β) =β t − w T φ(x ) φ(xn) (20)

(21)

n n

n=1

Setting the gradient to zero gives◮

◮

XN XN

0 = t φ(x )T − w T φ(x )φ(x )T
n n n n

n=1 n=1

Solving forwgives

wML = (ΦTΦ) −
1ΦTt(22)
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Maximum likelihood and least squares (cont.)

Normal equations for the LS problem:w = (ΦTΦ) −1ΦTtML

MatrixΦis theN×Mdesign matrix, with elementsΦ =φꢀ (x )
j n

nj

φ (x )φ ( )·ꢀ ·ꢀ ·φ x M − 1

(x1)
0 1 1

1

1

φ (x )φ (x )·ꢀ ·ꢀ ·φ (x )

2

0 2
Φ= 2 M − 1

(23)

(24)

.. . . .. . . .
φ (x )φꢀ ꢀ (x )·ꢀ ·ꢀ ·φ (x )

N
0 N 1 N M − 1

TheMoore-Penrose pseudo inverse 2 of matrixΦis the quantity

Φ† ≡ (Φ TΦ)−1ΦT

2Notion of matrix inverse for non-square matrices: IfΦsquare and invertible,Φ † =Φ −1
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Maximum likelihood and least squares (cont.)

Let us nowget some insight on the bias parameterw 0, by making it explicit

1P
The error functionE D(w) = N

n=1
tn − w T φ(xn) becomes

2◮
2

1XN MX− 1

− w − w φ(x ) 2ED(w) = tn (25)0 j j n
2

n=1 j=1

We can set its derivative wrtw 0 to be equal to zero and get◮

1 XN MX− 1

j=1

1 XN

wj N
tn

−
φ(x )

j n

w0 =
N

n=1 n=1{z| {z } | }
t φj

MX− 1

j=1

= t− wjφj (26)
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Maximum likelihood and least squares (cont.)

1 P
= N

nt tn
=1

MX−1

j=1

N
w0 = t − wjφj with

1 P
N

φj = φ(x )
j nN n=1

The biasw 0 compensates for the difference between the averages of the target
values{t }N in the training set and the weightedsum of the averages of then n=1
basis functions{φꢀ (x ) }M− 1 evaluated also over the whole training set{x }N

j n n
j=1 n=1
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Maximum likelihood and least squares (cont.)

N N
ln2π−βE D(w) wrtβ Maximising the likelihood lnp(t|w,β) = lnβ−2 2

Wefind that the inverse noise precision (the noise variance) is given by◮

1

βML

1 XN
2

= t − w T φ(x ) (27)n nN
n=1

It is the residual variance of the targets around the regression function◮
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Geometry of least squares

Let us now analyse the geometrical interpretation of the least-squares solution

Consider anN-dimensional space whose axes are given by thet n

t= (t ,ꢀ .ꢀ .ꢀ .ꢀ ,t )T is a vector in this space◮ 1 N

Each basis functionφꢀ (x ), evaluated at S j n
ttheNdata points, can also be seen as a

vector in the same space, denoted byϕ ϕ2 
j ϕ1 y

ϕ corresponds to thej-th column ofΦ,j

φ(x ) corresponds to then-th row ofΦn

If the numberMof basis functions is smaller than the numberNof points,
then theMvectorsϕ will span a linear subspaceSof dimensionalityMj
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Geometry of least squares (cont.)

n,w),n= 1,ꢀ .ꢀ .ꢀ .ꢀ ,N

1P

Define theN-dimensional vectorywhosen-th element isy(x

yis an arbitrary linear combination of the vectorsϕ◮

◮

j

it can live anywhere in thisM-dimensional subspace

The sum-of-squares errorE D(w) = (tn − w T φ(xn))2NS 
2 n=1

t
is equal (up to a factor 1/2) to the squared Euclideanϕ

2 
distance betweenyandtϕ1 y

The least-squares solution forwcorresponds to that choice
ofythat lies in subspaceSand that is closest tot

It can be shownthat this solution is an orthogonal projection oftontoS(⋆)
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Regularised least squares

1 M= 9

We introduced the idea of adding a
regularisationterm to an error function
in order to control over-fitting

t 

0

−1

0 1x 

M= 0M= 1M= 6M= 9
w⋆ 0.19 0.82

-1.27
0.31
7.99

0.35
232.37

-5321.83
The magnitude of the coefficients tends
to explode trying to (over)fit the data

0 
w⋆

1 
w⋆ -25.43

17.37
2 

w⋆ 48568.313 
w⋆ -231639.30

640042.26
-1061800.52
1042400.18
-557682.99
125201.43

2
M

w⋆4 ||w||2 =w T w=w 0
2 +w

1

2 +·ꢀ ·ꢀ ·+w ⋆5 
w 6 
w⋆

7 
w⋆

w⋆
8 

9 
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Regularised least squares (cont.)

Add a penalty term to the error functionE(w), to discourage the
coefficients from reaching large values

◮

◮ The simplest such penalty term is the sum of squares of all of the
coefficients, to get a new error function

1XN 1˜ , − 2E (w)= y(x w) t +λꢀ ||w||2 (28)
2 n

2n n=1 | {z }
| {z

ED(w)

}
EW (w)

where||w||ꢀ 2 =w T w=w 2 +w 2 +·ꢀ ·ꢀ ·+w 2◮

◮

0 1 M

Coefficientλtrades offbetween the regularisation
term and the standard sum-of-squares error
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Regularised least squares (cont.)

The total error function to be minimised became

ED(w) +λE W (w)

◮

◮

(29)

λis the regularisation coefficient that controls

the relative importance of the data-dependent
errorE D(w) and the regularisation termE W (w)

One of the simplest forms of regulariser is the
sum-of-squares of the weight vector elements

1

2
EW(w) = wT w (30)
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Regularised least squares (cont.)

Consider the sum-of-squares error function

1XN
2ED(w) = t − w T φ(x ) (31)n n

2
n=1

then, the total error function becomes

1XN λ 

2

2t − w T φ(x ) + wTw(32)n n
2

n=1

This particular choice of regulariser is known in the machine learning literature
asweight decaybecause in sequential learning algorithms, it encourages
weight values to decay towards zero, unless supported by the data

In statistics, it provides an example of aparameter shrinkagemethod because
it tends to shrinks the parameter values towards zero
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Regularised least squares (cont.)

For the polynomial example, we developed a Bayesian treatment of the problem

We introduced a prior distribution over the polynomial coefficientsw◮

1 1 1

2
A Gaussian priorN(x|µ,σ 2) = exp − (x− µ) T Σ− 1(x− µ)

(2π)D/2 |Σ|1/2

α 

2π 

α (M+1)/2

N(w|µ,Σ) =N(w|0,αꢀ ꢀ − 1 I) = exp −
2

wTw =p(w|α)◮

Withµ=0andΣ=α − 1 I,αis the precisionof the prior distribution
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Regularised least squares (cont.)

α 

2π 

αꢀ  
−

w
T
w

(M+1)/2

p(w|α) =N(w|0,α −1 I) = exp
2

YN

p(t|x,w,β) = tn y(xn,w),β −1

N n=1

Using Bayes’ theorem, the posterior distribution forwis proportional to
the product of the prior distribution and the likelihood function, thus

p(w|x,t,α,β)∝ p(t|x,w,β)p(w|α)

We determinedwbyfinding its most probable value given the data

bymaximising the posterior distribution◮

◮ maximum posterioror MAP
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Regularised least squares (cont.)

By taking the negative log of the posterior distribution overwand combining
with the log likelihood function and the prior distributionoverw, we found that

the maximum of the posterior is given by the minimumof◮

βꢀ XN α 

2
y(xn,w)− t

2 + wTwn
2

n=1

Thus, maximising the posterior is equivalent to minimising the regularised
sum-of-squares error function with regularisationλ=α/β 

1XN λ ˜ (y(x w) t )2, −E (w)=
2
||w||2n n

2
+ n=1

Though we included a priorp(w|α), we are still making point estimates ofw
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Regularised least squares (cont.)

1XN λ 

2
− w T φ(xn)

2
+ wTwtn

2
n=1

It has the advantage that the error function remains a quadratic function ofw

Its exact minimiser can be found in closed form◮

Wefirst set the gradient of the total error functionwith respect towto zero

Then, we solve forwto get◮

− 1

w= λI+Φ T Φ ΦT t(33)

− 1

This result is an extension of the least-squares solutionw= ΦTΦ ΦT t
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Regularised least squares (cont.)

A more general regulariser gives a regularised error in the form

1XN λꢀ XM
2t − w T φ(x ) + |wj|q (34)n n

2 2
n=1 j=1

whereq=2 corresponds to the classical quadratic regulariser

q= 0.5q= 1q= 2q= 4

The case ofq= 1 is know as thelassoin the statistics literature

Ifλis sufficiently large, some of the coefficientsw
Sparse model in which the corresponding basis functions play no role

are driven to zero◮

◮

j
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Regularised least squares (cont.)

To see this (⋆), wefirst note that minimising Eq. 34 is equivalent to minimising
the un-regularised sum-of-squares error (Eq. 3.12) subject to the constraint

XM

|wj|q ≤η (35)
j=1

for an appropriate value of parameterη(related, using Lagrange multipliers)

w2 w2 

The contours of the unregularised
error function (blue)

The constraint region for the◮

quadratic regulariser (q= 2)
w⋆w⋆ The constraint region for the◮

lasso regulariser (q= 1)

w1 w1 
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Regularised least squares (cont.)

Regularisation allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity

The problem of determining the optimal model complexity is shifted

fromfinding the appropriate number of basis functions◮

◮ to determining a suitable value of the coefficientλ 
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Multiple outputs

We have only discussed the case of a single target variablet

It happens that in some applications we wish to predictK>1 target variables

We denote collectively multivariate targets by the target vectort◮

This problemcan be approached by introducing a different set of basis functions
for each component oft, leading to multiple, independent regression problems

A more interesting, and more common, approach is to use the same set of◮

basis functions to model all of the components of the target vector so that

y(x,w) =W T φ(x)

is aK-dimensional column vector

is aM×Kmatrix of parameters

(36)

◮

◮

◮

y

W
φ

(x) is aM-dimensional column vector with elementsφꢀ (x) (φ (x) = 1)
j 0
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Multiple outputs (cont.)

Suppose, the conditional distribution of the target to be an isotropic Gaussian

p(t|x,W,β) =N( t|W T φ(x),βꢀ − 1 I) (37)

If we have a set of observationst ,ꢀ .ꢀ .ꢀ .ꢀ ,t , we can combine these1 N

into a matrixTof sizeN×Ksuch that then-th row is given byt T
n

Similarly,we can combine the input vectorsx ,ꢀ .ꢀ .ꢀ .ꢀ ,x into matrixX1 N

The log likelihood function is then given by

XN

lnp(T|X,W,β) = lnN(t n|WTφ(x),βꢀ −1I)
n=1

β 

2π 

βꢀ XNNK
2

= ln − ||t − W Tφ(x )||2 (38)n n2
n=1
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Multiple outputs (cont.)

The minimisationof this function with respect toWgives

− 1
(39)

(40)

WML = ΦT Φ ΦT T

For each target variablet k, we have

wk =
Φ

TΦ
− 1

ΦT tk =Φ †tk

wheret k is aN-dimensional vector with componentt nk, forn= 1,ꢀ .ꢀ .ꢀ .ꢀ ,N
The solution decouples between different target variables◮

We need compute a single pseudo-inverse matrixΦ †, sharedby all vectorswk
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Multiple outputs (cont.)

The extension to general Gaussian noise distributions
having arbitrary covariance matrices is straightforward (⋆)
Again, this leads to a decoupling intoKindependent regression problems

This result is unsurprising because:

the parametersWdefine only the mean of the Gaussian noise distribution◮

◮ he maximum likelihood solution for the mean of a multivariate Gaussian is
independentof the covariance
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