
A Brief in probability theory
Probability theory is incorporated into machine learning, particularly the subset

of artificial intelligence concerned with predicting outcomes and making
decisions.

In computer science, functions are used to limit the functions outcome to a
value between 0 and 1.

It is the core concept as well as a primary prerequisite to understanding the
ML models and their applications.

Probability theory is a mathematical framework for quantifying our uncertainty
about the world. It allows us (and our software) to reason effectively in situations
where being certain is impossible.

Probability theory is at the foundation of many machine learning algorithms.
The goal of this post is to cover the vocabulary and mathematics needed before
applying probability theory to machine learning applications.



Mathematics of Probability

Probability is all about the possibility of various outcomes. The set of all 
possible outcomes is called the sample space.

The sample space for a coin flip is {heads, tails}. The sample 
space for the temperature of water is all values between the freezing 
and boiling point. Only one outcome in the sample space is 
possible at a time, and the sample space must contain all possible 
values. 

The sample space is often depicted as Ω (capital omega) and a 
specific outcome as ω (lowercase omega). We represent the probability 
of an event ω as P(ω).

The two basic axioms of probability are:





The probability of any event has to be between 0 (impossible) 
and 1 (certain), and the sum of the probabilities of all events should be 
1. 

This follows from the fact that the sample space must contain all 
possible outcomes. 

Therefore, we are certain (probability 1) that one of the possible 
outcomes will occur.





Bayes’ Rule:

The chain rule for two variables in two equivalent ways:

• P(x, y) = P(x|y) ⋅ P(y)

• P(x, y) = P(y|x) ⋅ P(x)

In probability theory, the chain rule (also called the general
product rule) permits the calculation of any member of the joint
distribution of a set of random variables using only conditional
probabilities.



• If we set both right sides equal to each other and divide by P(y), we 
get Bayes’ rule:

Expectation:

The expected value, or expectation, of a function h(x) on a 
random variable x ~ P(x) is the average value of h(x) weighted by P(x). 
For a discrete x, we write this as:



What’s the expected value of playing the guessing game at the casino if we assume 

we have a 1/10 chance of guessing the correct number?

𝔼[h(x)] = P(winning) ⋅ h(winning) + P(loosing) ⋅ h(loosing)= (1/10) ⋅ $8 + (9/10) ⋅ (-$2) = 

$0.80 + (-$1.80) = -$1. So on average, we’ll loose $1 every time we play!



Variance and Covariance:

We saw variance with respect to a Gaussian distribution when we 
were talking about continuous random variables. In general, variance is 
a measure of how much random values vary from their mean. Similarly, 
for functions of random variables, the variance is a measure of the 
variability of the function’s output from its expected value.


