
Testing Machine Learning Algorithms
In machine learning, model testing is referred to as the process where the

performance of a fully trained model is evaluated on a testing set.

Model evaluation in machine learning testing

Usually, software testing includes:

•Unit tests. The program is broken down into blocks, and each element (unit) is
tested separately. To Check the correctness of individual model components.

•Regression tests. They cover already tested software to see if it doesn’t suddenly
break. To Check whether your model breaks and test for previously encountered bugs.

•Integration tests. This type of testing observes how multiple components of the
program work together. To Check whether the different components work with each other
within your machine learning pipeline.





To use a training set to train the model. Then, to evaluate the 
performance of the model, you use two sets of data:

• Validation set. Having only a training set and a testing set is not 
enough if you do many rounds of hyperparameter-tuning (which is 
always). And that can result in overfitting. To avoid that, you can select 
a small validation data set to evaluate a model. Only after you get 
maximum accuracy on the validation set, you make the testing set 
come into the game.

• Test set (or holdout set). Your model might fit the training dataset 
perfectly well. But where are the guarantees that it will do equally well 
in real-life? In order to assure that, you select samples for a testing set 
from your training set — examples that the machine hasn’t seen 
before. It is important to remain unbiased during selection and draw 
samples at random. Also, you should not use the same set many times 
to avoid training on your test data. Your test set should be large 
enough to provide statistically meaningful results and be representative 
of the data set as a whole.





Problems With Testing Machine Learning Models:

Software developers write code to produce deterministic behavior. Testing
identifies explicitly which part of the code fails and provides a relatively
coherent coverage measure. It helps us in two ways:

• Quality assurance: whether the software works according to requirements

• Identify defects and flaws during development and in production

Data Scientists and Machine Learning Engineers train models by feeding them
with examples and setting parameters. The model training logic produces the
behavior. This process raises the following challenges to testing machine
learning models:



• Lack of transparency: Many models work like black boxes.

• Indeterminate modeling outcomes: Many models rely on stochastic 
algorithms and do not produce the same model after (re)training.

• Generalizability: Models need to work consistently in circumstances other 
than their training environment.

• Unclear idea of coverage: There is no established way to express testing 
coverage for machine learning models. “Coverage” does not refer to lines of 
code in machine learning as it does in software development. Instead, it might 
relate to ideas like input data and model output distribution.

• Resource need: Continuous testing of ML models is resource and time-
intensive.

These issues make it difficult to understand the reasons behind a 
model’s low performance, interpret the results, and assure that our model will 
work even when there is a change in the input data distribution (“data drift”) 
or in the relationship between our input and output variables (“concept drift”).



Principles in Machine Learning Model Testing

Testing is not easy, and testing machine learning models is even harder. 
Need to prepare your workflow for unexpected events while working with 
dynamic inputs, black-box models, and shifting input/output relationships.

For this reason, some best practices in software testing:

• Test after introducing a new component, model, or data, and after model 
retraining

• Test before deployment and production

• Write tests to avoid recognized bugs in the future

Testing machine learning models has additional requirements. You also 
need to some testing principles specific to machine learning problems:

Robustness Interpretability Reproducibility



Robustness

Robustness requires your model to produce a relatively stable performance 
even in the case of radical real-time change of data and relationships.

• You can strengthen robustness in the following ways:

• Have a machine learning procedure that your team follows.

• Explicitly test for robustness (e.g., drift, noise, bias).

• Have a monitoring policy for deployed models.

Interpretability

Maintaining interpretability makes you understand specific aspects of your 
model:

• Whether the model predicts outputs as it should (e.g., based on human 
evaluators)

• How input variables contribute to the output

• Whether the data/model has underlying biases



Reproducibility

To understand how your model changes thanks to parameter 
adjustments, retraining, or new data, especially within a team, you need to 
make your results reproducible.

• Reproducibility has many aspects. Here are some tips:

• Use a fixed random seed by a deterministic random number generator.

• Make sure that the components run in the same order and receive the same 
random seed.

• Use version control even for preliminary iterations.


