

SECURITY IN COMPUTING, FIFTH EDITION

Chapter 2: Toolbox: Authentication, Access Control, and Cryptography

2

Objectives for Chapter 2

- Survey authentication mechanisms
- List available access control implementation options
- Explain the problems encryption is designed to solve
- Understand the various categories of encryption tools as well as the strengths, weaknesses, and applications of each
- Learn about certificates and certificate authorities

Authentication

3

- The act of proving that a user is who she says she is
- Methods:
 - Something the user knows
 - Something the user is
 - Something user has

Something You Know

- Passwords
- Security questions
- Attacks on "something you know":
 - Dictionary attacks
 - Inferring likely passwords/answers
 - Guessing
 - Defeating concealment
 - Exhaustive or brute-force attack
 - Rainbow tables

Distribution of Password Types

Identity	Password	
Jane	qwerty	
Pat	aaaaaa	
Phillip	oct31witch	
Roz	aaaaaa	
Herman	guessme	
Claire	aq3wm\$oto!4	
Plaintext		

Identity	Password
Jane	0x471aa2d2
Pat	0x13b9c32f
Phillip	0x01c142be
Roz	0x13b9c32f
Herman	0x5202aae2
Claire	0x488b8c27

Concealed

7

Biometrics: Something You Are

- Intrusive
- Expensive
- Single point of failure
- Sampling error
- False readings
- Speed
- Forgery

Time-Based Token Authentication

9

Federated Identity Management

Single Sign-On

Access Control

- Goals:
 - Check every access
 - Enforce least privilege
 - Verify acceptable usage
- Track users' access
- Enforce at appropriate granularity
- Use audit logging to track accesses

Implementing Access Control

- Reference monitor
- Access control directory
- Access control matrix
- Access control list
- Privilege list
- Capability
- Procedure-oriented access control
- Role-based access control

Access Control Matrix

	BIBLIOG	TEMP	F	HELP.TXT	C_COMP	LINKER	SYS_CLOCK	PRINTER
USER A	ORW	ORW	ORW	R	Х	X	R	W
USER B	R	-	-	R	Х	х	R	W
USER S	RW	-	R	R	Х	х	R	W
USER T	-	-	-	R	Х	X	R	W
SYS_MGR	-	-	-	RW	OX	OX	ORW	0
USER_SVCS	-	-	-	0	Х	X	R	W

18

F

Problems Addressed by Encryption

- Suppose a sender wants to send a message to a recipient. An attacker may attempt to
 - Block the message
 - Intercept the message
 - Modify the message
 - Fabricate an authentic-looking alternate message

Encryption Terminology

- Sender
- Recipient
- Transmission medium
- Interceptor/intruder
- Encrypt, encode, or encipher
- Decrypt, decode, or decipher
- Cryptosystem
- Plaintext
- Ciphertext

Encryption/Decryption Procession

Stream Ciphers

Block Ciphers

Stream vs. Block

	Stream	Block
Advantages	 Speed of transformation Low error propagation 	 High diffusion Immunity to insertion of symbol
Disadvantages	 Low diffusion Susceptibility to malicious insertions and modifications 	 Slowness of encryption Padding Error propagation

DES: The Data Encryption Standard

- Symmetric block cipher
- Developed in 1976 by IBM for the US National Institute of Standards and Technology (NIST)

Form	Operation	Properties	Strength
DES	Encrypt with one key	56-bit key	Inadequate for high- security applications by today's computing capabilities
Double DES	Encrypt with first key; then encrypt result with second key	Two 56-bit keys	Only doubles strength of 56-bit key version
Two-key triple DES	Encrypt with first key, then encrypt (or decrypt) result with second key, then encrypt result with first key (E-D-E)	Two 56-bit keys	Gives strength equivalent to about 80-bit key (about 16 million times as strong as 56-bit version)
Three-key triple DES	Encrypt with first key, then encrypt or decrypt result with second key, then encrypt result with third key (E-E-E)	Three 56-bit keys	Gives strength equivalent to about 112-bit key about 72 quintillion (72*10 ¹⁵) times as strong as 56-bit version

AES: Advanced Encryption System

- Symmetric block cipher
- Developed in 1999 by independent Dutch cryptographers
- Still in common use

	DES	AES
Date designed	1976	1999
Block size	64 bits	128 bits
Key length	56 bits (effective length); up to 112 bits with multiple keys	128, 192, 256 (and possibly more) bits
Operations	16 rounds	10, 12, 14 (depending on key length); can be increased
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion
Design	Open	Open
Design rationale	Closed	Open
Selection process	Secret	Secret, but open public comments and criticisms invited
Source	IBM, enhanced by NSA	Independent Dutch cryptographers

DES vs. AES

Public Key (Asymmetric) Cryptography

- Instead of two users sharing one secret key, each user has two keys: one public and one private
- Messages encrypted using the user's public key can only be decrypted using the user's private key, and vice versa

Secret Key vs. Public Key Encryption

	Secret Key (Symmetric)	Public Key (Asymmetric)
Number of keys	1	2
Key size (bits)	56-112 (DES), 128-256 (AES)	Unlimited; typically no less than 256; 1000 to 2000 currently considered desirable for most uses
Protection of key	Must be kept secret	One key must be kept secret; the other can be freely exposed
Best uses	Cryptographic workhorse. Secrecy and integrity of data, from single characters to blocks of data, messages and files	Key exchange, authentication, signing
Key distribution	Must be out-of-band	Public key can be used to distribute other keys
Speed	Fast	Slow, typically by a factor of up to 10,000 times slower than symmetric algorithms

Public Key to Exchange Secret Keys

Key Exchange Man in the Middle

Error Detecting Codes

- Demonstrates that a block of data has been modified
- Simple error detecting codes:
 - Parity checks
 - Cyclic redundancy checks
- Cryptographic error detecting codes:
 - One-way hash functions
 - Cryptographic checksums
 - Digital signatures

Parity Check

Original Data	Parity Bit	Modified Data	Modification Detected?
0 0 0 0 0 0 0 0	1	0 0 0 0 0 0 0 <u>1</u>	Yes
000000000	1	<u>1</u> 0000000	Yes
000000000	1	<u>1</u> 000000 <u>1</u>	No
000000000	1	0 0 0 0 0 0 <u>1</u> <u>1</u>	No
000000000	1	$0 \ 0 \ 0 \ 0 \ 0 \ \underline{1} \ \underline{1} \ \underline{1}$	Yes
000000000	1	$0 \ 0 \ 0 \ 0 \ \underline{1} \ \underline{1} \ \underline{1} \ \underline{1} \ \underline{1}$	No
000000000	1	$0 \underline{1} 0 \underline{1} 0 \underline{1} 0 \underline{1} 0 \underline{1}$	No
0 0 0 0 0 0 0 0	1	1 1 1 1 1 1 1 1 1	No

One-Way Hash Function

Digital Signature

Certificates: Trustable Identities and Public Keys

- A certificate is a public key and an identity bound together and signed by a certificate authority.
- A certificate authority is an authority that users trust to accurately verify identities before generating certificates that bind those identities to keys.

38

Certificate Signing and Hierarchy

To create Diana's certificate:

Diana creates and delivers to Edward:

Name: Diana Position: Division Manager Public key: 17EF83CA ...

Edward adds:

Name: Diana	hash value
Position: Division Manager	128C4
Public key: 17EF83CA	

Edward signs with his private key:

Name: Diana	hash value
Position: Division Manager	128C4
Public key: 17EF83CA	

Which is Diana's certificate.

To create Delwyn's certificate:

Delwyn creates and delivers to Diana:

Name: Delwyn Position: Dept Manager Public key: 3AB3882C ...

Diana adds:

Name: Delwyn	hash value
Position: Dept Manager	48CFA
Public key: 3AB3882C	

Diana signs with her private key:

Name: Delwyn	hash value
Position: Dept Manager	48CFA
Public key: 3AB3882C	

And appends her certificate:

Name: Delwyn Position: Dept Manager Public key: 3AB3882C	hash value 48CFA
Name: Diana Position: Division Manager Public key: 17EF83CA	hash value 128C4

Which is Delwyn's certificate.

Cryptographic Tool Summary

ΤοοΙ	Uses
Secret key (symmetric) encryption	Protecting confidentiality and integrity of data at rest or in transit
Public key (asymmetric) encryption	Exchanging (symmetric) encryption keys Signing data to show authenticity and proof of origin
Error detection codes	Detect changes in data
Hash codes and functions (forms of error detection codes)	Detect changes in data
Cryptographic hash functions	Detect changes in data, using a function that only the data owner can compute (so an outsider cannot change both data and the hash code result to conceal the fact of the change)
Error correction codes	Detect and repair errors in data
Digital signatures	Attest to the authenticity of data
Digital certificates	Allow parties to exchange cryptographic keys with confidence of the identities of both parties

Summary

- Users can authenticate using something they know, something they are, or something they have
- Systems may use a variety of mechanisms to implement access control
- Encryption helps prevent attackers from revealing, modifying, or fabricating messages
- Symmetric and asymmetric encryption have complementary strengths and weaknesses
- Certificates bind identities to digital signatures