



**TOPIC:7-Consistency of premised and Indirect method of proof** 

# Consistency and Inconsistency of premises

A set of formulae H, H, --- Hm is said to be in consistent if their conjunction implies contradiction.

u) H1 1 H2 1 ···· 1 Hm ⇔ F

A set of formulae H., H.,... Hm is Said to be consistent if it is not inconsistent.

① Prove that  $P \rightarrow Q$ ,  $Q \rightarrow R$ ,  $S \rightarrow \neg R$ ,  $P^{\Lambda S}$  are inconsistent.





|                     | -                      | 1503                                    |
|---------------------|------------------------|-----------------------------------------|
| <i>{</i> 1 <i>}</i> | 1) P→a                 | Rule P                                  |
| <b>{2</b> }         | $2)$ $Q \rightarrow R$ | Rule P                                  |
| {1,2}               | 3) P→R                 | Rule T (P→a, a→R<br>⇒ P→R)              |
| <b>{4</b> }         | 4) S → ¬R              | Rule P                                  |
| <b>{4</b> }         | 5) R → ¬S              | Rul T (P→a ⇔ ¬Q→¬P)                     |
| \$1,2,4}            | 6) P → ¬S              | Rul T (P→a, a→R ⇒ P→R)                  |
| {1,2,4}             | 7) 7PV75               | Rule T (P→a ⇔¬PVQ)                      |
| ξ1,2,4 <b>ζ</b>     | 8) ¬(P^5)              | Rule T (Demorgan's)                     |
| <b>{9</b> }         | q) PAS                 | Rule P                                  |
| {1,2,4,9}           | 10) (PAS) A 7 (PMS)    | Rule T (P, $a \Rightarrow P \wedge a$ ) |
| 1                   |                        |                                         |

Which is nothing but false value. Therefore given premises are inconsistent.





② Prove that P→Q, Q→R, R→S, and PAS are inconsistent.

| <b>{1</b> }     | 1) P→Q                         | Rule P                        |
|-----------------|--------------------------------|-------------------------------|
| <b>{2</b> }     | 2) Q → R                       | Rule P                        |
| £1,23           | 3) $P \rightarrow R$           | Rule T (P→Q,Q→R<br>⇒ P→R      |
| <b>{4</b> }     | 4) R → S                       | Rule P                        |
| ξ1,2,4 <b>ζ</b> | 5) P→S                         | Rule T (P→a,a→R<br>⇒ P→1      |
| <b>\$63</b>     | 6) S → ¬R                      | Rule P                        |
| £ 63            | $\neg)$ $R \rightarrow \neg s$ | Rule 7 (P→a ⇔ ¬a→             |
| <b>{6</b> }     | 8) ¬RV¬S                       | RW T (P→a ⇔ ¬PV               |
| <i>₹63</i>      | 9) 75                          | Rule T (PVa ⇒ a)              |
| {1,2,4,6}       | 10) ¬P                         | Rule T (P→a, ¬a→              |
| \$1,2,4,6}      | 11) - PV-5                     | Rule T (P, Q $\Rightarrow$ PV |
| £123            | 12) PAS                        | Rule P                        |
| \$1,2,4,63      | 13) ¬(PAS)                     | Rule T (Demorgan's)           |
| \$1,2,4,6,12}   | 14) (PAS) \$A                  | Rule T (P, a → PAG            |
| which is        | nothing but fals               | e value. Therefore            |
| given premis    | ses are inconsistent           | <b>\$1</b>                    |





# Indirect Method of Proof

In order to show that a conclusion C follows logically from the premises H. H., ... Hm, we assure C is FALSE and consider - C as an additional premises. If H. A H. A ... A Hm A - C is a contradiction, then C follows logically from H., H., ..., Hm.

Using indirect method of proof, durive  $P \rightarrow \neg S$ from the premises  $P \rightarrow (qvr)$ ,  $q \rightarrow \neg P$ ,  $S \rightarrow \neg r$  and P. we consider  $\neg (P \rightarrow \neg S)$  as an additional premises  $= \neg (\neg P \lor \neg S) = P \land S$ .

| <b>\$13</b>   | 1) pas       | Assumud promises                                     |
|---------------|--------------|------------------------------------------------------|
| §23           | 2) p → (qvr) | Rule P                                               |
| <b>§3</b> }   | 3) P         | Rule P                                               |
| <b>{2,3</b> } | 4) 9V7       | Rule $T(P, P \rightarrow \alpha \Rightarrow \alpha)$ |
| <b>{13</b>    | 5) 5         | Rule T (Pra ⇒ a)                                     |
| <b>{6</b> }   | 6) 5→¬Y      | Rule P                                               |
| {1,6}         | 7) 78        | Rule T (P, P→a → a).                                 |
|               |              |                                                      |





| \{2,3\}       | 8) 79 > r  | Rule T (P-) a (>) - PVO |
|---------------|------------|-------------------------|
| <b>{2,3</b> } | 9) 77 -> 9 | Rule T (contrapositive) |
| \$1,2,3,6}    | 10) 9      | Rule T (P, P→a ⇒a)      |
| {11}          | 11) 9→¬P   | Rule P                  |
| \$1,2,3,6,11} | 12) 7 12.  | Rule T (P, P→a ⇒a)      |
| {1,2,3,6,11}  | 13) pn-p   | Rule T (P, Q ⇒ PAQ)     |

which is nothing but false value. By method of contradiction,  $p \rightarrow -5$ 





5 how that the following argument is valid.

"Try father praises me only if I can be proud of myself. Either I do well in sports or I cannot be proud of brintself. If study hard, then I cannot do well in sports. Therefore, if father praises me, then I do not study well."

Let A: My father praises me

B: I can be proud of myself

c: I do well in sports

D: I study hard

Thun, the premises are

 $A \rightarrow B$ ,  $C \lor \neg B$ ,  $D \rightarrow \neg C$ 

Conclusion is  $A \rightarrow \neg D$ 





|             |            | www.                                       |
|-------------|------------|--------------------------------------------|
| {1}         | 1) A       | Assumed premises                           |
| <b>{2</b> } | 5) V→B     | Rule P                                     |
| \$1,23      | 3) B       | Rule T (P, P→a ⇒a)                         |
| <b>54</b> { | 4) C V ¬ B | Rule P                                     |
| <b>{4</b> } | 5) B → C   | Rule T (P→a ⇔¬PVa)                         |
| {1,2,4}     | 6) C       | Rule $T(P, P \rightarrow a \Rightarrow a)$ |
| १७९         | 7) D→7C    | Rule P                                     |
| <b>ξη</b> ζ | 8) c → ¬D  | Rule T                                     |
| إ١,2,4,7}   | 9) ¬D      | Rule $T(P, P \rightarrow a \Rightarrow Q)$ |
| _           | 10) A →¬D  | Rule CP                                    |