

SNS COLLEGE OF ALLIED HEALTH SCIENCES- COIMBATORE 35

DEPARTMENT : RADIOGRAPHY AND IMAGNG TECHNOLOGY

- SUBJECT : GENERAL PHYSICS, RADIATION PHYSICS AND PHYSICS OF **DIAGNOSTIC RADIOLOGY**
- (UNIT 3 RADIOACTIVITY) PAPER : PAPER II
- : 1. HALF LIFE TOPIC 2. ACTIVITY **3. SPECIFIC ACIVITY**

HALF LIFE

- It is time in which a given quantity of a radionuclide decays to half of its \bullet initial value ($T \frac{1}{2}$)
- It is the time needed for half of the atomic nuclei of a radioactive decay. • The rate of radioactive isotope decay is measured in half life. For example the half life of the Cobalt -60 is 5.26 Years.
- The relation between the half life ($T \frac{1}{2}$), and the decay constant is, •
- T $\frac{1}{2} = 0.693 / \lambda$ \bullet

ACTIVITY AND SPECIFIC ACTIVITY

ACTIVITY

- The rate of disintegration (transformation) or decay of radioactive material.
- The units of activity are curie (Ci) and Becquerel (Bq) ۲
- $1 \text{ Ci} = 3.7 * 10^{10}$ disintegration per second which equals to $3.7 * 10^{10}$ Becquerel.

SPECIFIC ACTIVITY

- Specific activity is defined as the activity per unit mass of particular radionuclide. It is usually given in units of Bq/kg, but another commonly used unit of activity is the curie (Ci)
- Allowing the specific activity to be given the unit Ci/g. \bullet

EXPONENTIAL DECAY

- The exponential decay formula helps in finding the rapid decrease over a period of time, i.e the exponential decreases. The exponential decay formula is used to find the population decay, half-life, radioactive decay, etc.
- $dN/dt = -\lambda N$ the solution to this equation is,
- N (t) = $N_0 e^{-\lambda t}$.
- N (t) quantity at time ; N_0 -initial quantity, that is, the quantity at time t=0

INTERROGATIONS

1. Define half life

2. What is activity ?

3. What is specific activity of an atom ?

REFERENCES

- 1. Physics for Radiography Hay and Hughs
- 2. Ball and mores essential physics radiographers, IV edition, Blackwell publishing.
- 3. Basic Medical Radiation physics Stanton.
- 4. Christensen's Physics of Diagnostic Radiology Christensen.
- 5. The physics of Radiology and Imaging K Thayalan.

6/10

THANK YOU

RADIOACTIVITY/GENERAL PHYSICS , RADIATION PHYSICS AND PHYSICS OF DIAGNOSTIC RADIOLOGY / NANDHINI B/RIT/SNSCAHS

